High-order features of a single linear corneal laceration image are valuable biomarkers in an intelligent multimodal analytic strategy for corneal laceration reconstruction

人工智能 分割 纤维接头 计算机科学 计算机视觉 职位(财务) 相似性(几何) 医学 外科 图像(数学) 财务 经济
作者
Wei Liu,Lei Zhou,Xun Yang
出处
期刊:Displays [Elsevier]
卷期号:79: 102507-102507 被引量:2
标识
DOI:10.1016/j.displa.2023.102507
摘要

In corneal lacerations, the absence of high-order image features as biomarkers to guide surgical strategy is a limiting factor. The absence of multimodal data restricts the development of automated reconstruction designs for corneal laceration. The present study is aimed at training and optimizing the model based on high-order features from corneal laceration images and real suture samples and completing the intelligent promotion of whole corneal laceration suture auxiliary decision-making with the two-step method of automatic wound identification and stitch position prediction. Based on the images of isolated corneal wound samples, a fully supervised U-Net learning method and consistent regular semisupervised learning method based on the mean-teacher model were used to identify the wounds. The DDice coefficient was used to evaluate the segmentation and recognition effect. Traditional image processing technology was used to predict the needle entry and exit points of wound sutures based on medical suture principles. The prediction effect was evaluated by viewpoint similarity. After training the wound recognition model based on 2400 corneal images and corresponding incision labels, the DDice coefficients of supervised U-Net with or without postprocessing results were 0.902 and 0.817, respectively. The Dice coefficients of the semisupervisedmean-teacher model with or without postprocessing were 0.921 and 0.843, respectively. The key point similarity of wound stitch position prediction was 0.872 ± 0.021. This new automated method for corneal laceration identification and stitch position generation based on novel biomarkers and multimodal data is expected to assist doctors treating corneal lacerations to quickly formulate a primary suturing strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
科研通AI2S应助清脆初晴采纳,获得20
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
我是老大应助名金学南采纳,获得10
1秒前
1秒前
clear完成签到,获得积分10
1秒前
Jasper应助落后猫咪采纳,获得10
1秒前
nightgaunt发布了新的文献求助10
1秒前
1秒前
1733完成签到,获得积分10
1秒前
彭佳乐发布了新的文献求助10
2秒前
Aireen完成签到,获得积分10
2秒前
谢大喵应助进口小宵采纳,获得30
2秒前
2秒前
2秒前
CodeCraft应助lyn采纳,获得10
2秒前
牙瓜发布了新的文献求助20
2秒前
孤独的猕猴桃完成签到,获得积分10
3秒前
3秒前
3秒前
风清扬发布了新的文献求助10
3秒前
4秒前
get完成签到,获得积分10
4秒前
曾经友容完成签到 ,获得积分10
4秒前
燕子归来发布了新的文献求助10
4秒前
5秒前
5秒前
Lilili发布了新的文献求助10
5秒前
自信玥发布了新的文献求助10
5秒前
hhhhhzj发布了新的文献求助10
5秒前
神仙渔发布了新的文献求助30
5秒前
三十三天发布了新的文献求助10
5秒前
满意曼荷发布了新的文献求助200
6秒前
俊逸若之发布了新的文献求助10
6秒前
Orange应助清风朗月采纳,获得10
7秒前
爆米花应助优雅的逊采纳,获得10
7秒前
九九发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545991
求助须知:如何正确求助?哪些是违规求助? 4631933
关于积分的说明 14623692
捐赠科研通 4573623
什么是DOI,文献DOI怎么找? 2507694
邀请新用户注册赠送积分活动 1484354
关于科研通互助平台的介绍 1455637