High-order features of a single linear corneal laceration image are valuable biomarkers in an intelligent multimodal analytic strategy for corneal laceration reconstruction

人工智能 分割 纤维接头 计算机科学 计算机视觉 职位(财务) 相似性(几何) 医学 外科 图像(数学) 财务 经济
作者
Wei Liu,Lei Zhou,Xun Yang
出处
期刊:Displays [Elsevier]
卷期号:79: 102507-102507 被引量:2
标识
DOI:10.1016/j.displa.2023.102507
摘要

In corneal lacerations, the absence of high-order image features as biomarkers to guide surgical strategy is a limiting factor. The absence of multimodal data restricts the development of automated reconstruction designs for corneal laceration. The present study is aimed at training and optimizing the model based on high-order features from corneal laceration images and real suture samples and completing the intelligent promotion of whole corneal laceration suture auxiliary decision-making with the two-step method of automatic wound identification and stitch position prediction. Based on the images of isolated corneal wound samples, a fully supervised U-Net learning method and consistent regular semisupervised learning method based on the mean-teacher model were used to identify the wounds. The DDice coefficient was used to evaluate the segmentation and recognition effect. Traditional image processing technology was used to predict the needle entry and exit points of wound sutures based on medical suture principles. The prediction effect was evaluated by viewpoint similarity. After training the wound recognition model based on 2400 corneal images and corresponding incision labels, the DDice coefficients of supervised U-Net with or without postprocessing results were 0.902 and 0.817, respectively. The Dice coefficients of the semisupervisedmean-teacher model with or without postprocessing were 0.921 and 0.843, respectively. The key point similarity of wound stitch position prediction was 0.872 ± 0.021. This new automated method for corneal laceration identification and stitch position generation based on novel biomarkers and multimodal data is expected to assist doctors treating corneal lacerations to quickly formulate a primary suturing strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
没有你沉完成签到,获得积分10
1秒前
2秒前
我是老大应助Mrs.yang采纳,获得10
4秒前
FashionBoy应助谦让的雅青采纳,获得10
4秒前
Lucas应助jj采纳,获得10
6秒前
scinanpro完成签到 ,获得积分10
6秒前
7秒前
chen发布了新的文献求助10
7秒前
tl发布了新的文献求助30
7秒前
李爱国应助DDL采纳,获得10
7秒前
乐乐应助小芳芳采纳,获得10
8秒前
cjw123发布了新的文献求助10
11秒前
求道的竹子完成签到,获得积分10
11秒前
tl应助lxh采纳,获得10
11秒前
超级的丹琴完成签到,获得积分10
13秒前
工藤新一完成签到 ,获得积分10
14秒前
柒_l完成签到 ,获得积分10
14秒前
15秒前
ding应助cjw123采纳,获得10
15秒前
司徒代云发布了新的文献求助10
19秒前
26秒前
没有你沉发布了新的文献求助10
26秒前
26秒前
26秒前
柒玉染完成签到,获得积分10
27秒前
斯文败类应助司徒代云采纳,获得10
27秒前
optimist发布了新的文献求助30
30秒前
柒玉染发布了新的文献求助10
31秒前
司徒代云完成签到,获得积分10
39秒前
41秒前
诗错亦染完成签到,获得积分10
42秒前
42秒前
tl完成签到,获得积分20
42秒前
43秒前
zzz完成签到 ,获得积分10
43秒前
kourosz完成签到,获得积分20
45秒前
DDL发布了新的文献求助10
46秒前
Bonobonoya发布了新的文献求助10
47秒前
郝宝真发布了新的文献求助10
47秒前
Edward完成签到 ,获得积分10
47秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165510
求助须知:如何正确求助?哪些是违规求助? 2816568
关于积分的说明 7913181
捐赠科研通 2476098
什么是DOI,文献DOI怎么找? 1318668
科研通“疑难数据库(出版商)”最低求助积分说明 632179
版权声明 602388