Android malware analysis and detection: A systematic review

恶意软件 计算机科学 Android(操作系统) 静态分析 Android恶意软件 隐病毒学 机器学习 人工智能 计算机安全 恶意软件分析 操作系统 程序设计语言
作者
Anuradha Dahiya,Sukhdip Singh,Gulshan Shrivastava
出处
期刊:Expert Systems [Wiley]
被引量:3
标识
DOI:10.1111/exsy.13488
摘要

Abstract Android malware has been emerged as a significant threat, which includes exposure of confidential information, misrepresentation of facts and execution of applications without the knowledge of the users. Malware analysis plays an essential role in dealing with the unlawful behaviour of such malicious applications. Android malware analysis involves examining and understanding malware behaviour and its characteristics. It also includes potential adversarial impacts on Android devices. This paper presents a quick understanding and a holistic view of malware detection and analysis. The current investigation conducted a systematic literature review (SLR) to recognize the salient shifts in malware detection by examining a range of scholarly journals and conference papers. The SLR investigated 99 articles published between the years 2018 and 2023. The key observation of this SLR is that static analysis is the most implemented approach for detecting Android malware; Apktool and Androguard are the most frequently used tools. This study also conceded that deep learning and machine learning models have more potential to analyse the malicious behaviour of malware. Certain challenges are faced in Android malware analysis, that is, obfuscation techniques, dynamic code loading, and issues related to experimented datasets. Further, this study focuses on the following areas: the definition of the sample set, data optimisation and processing, feature extraction, machine learning application, and classifier validation. This investigation differs from previous analyses of Android malware detection by emphasizing additional methods based on machine learning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一只菜鸟完成签到 ,获得积分10
2秒前
2秒前
4秒前
4秒前
纯情的馒头完成签到,获得积分10
5秒前
xuan完成签到,获得积分10
5秒前
6秒前
6秒前
彭于晏应助啾啾采纳,获得10
8秒前
NexusExplorer应助喜悦的大船采纳,获得50
10秒前
赤侯发布了新的文献求助10
11秒前
12秒前
科研通AI5应助wangjw采纳,获得10
12秒前
13秒前
打打应助坦率大米采纳,获得30
13秒前
16秒前
科研通AI5应助cctv18采纳,获得10
16秒前
phyllis发布了新的文献求助10
17秒前
专注鼠标发布了新的文献求助10
17秒前
18秒前
神说应助cm357558984采纳,获得10
18秒前
18秒前
cctv18给123的求助进行了留言
20秒前
烟花应助余成风采纳,获得10
20秒前
yang完成签到,获得积分10
20秒前
21秒前
九影节发布了新的文献求助10
21秒前
晨雨初听发布了新的文献求助10
21秒前
hero发布了新的文献求助10
22秒前
22秒前
ABEDO发布了新的文献求助10
24秒前
25秒前
汉堡包应助王小明采纳,获得10
26秒前
phyllis完成签到,获得积分10
27秒前
小二郎应助hxy采纳,获得10
28秒前
28秒前
wangjw发布了新的文献求助10
28秒前
28秒前
29秒前
九影节完成签到,获得积分10
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3756621
求助须知:如何正确求助?哪些是违规求助? 3299946
关于积分的说明 10112052
捐赠科研通 3014452
什么是DOI,文献DOI怎么找? 1655544
邀请新用户注册赠送积分活动 790009
科研通“疑难数据库(出版商)”最低求助积分说明 753533