分割
计算机科学
牙周纤维
人工智能
计算机视觉
锥束ct
韧带
任务(项目管理)
接口(物质)
模式识别(心理学)
计算机断层摄影术
口腔正畸科
解剖
工程类
生物
医学
放射科
最大气泡压力法
气泡
并行计算
系统工程
作者
Peidi Xu,Torkan Gholamalizadeh,Faezeh Moshfeghifar,Sune Darkner,Kenny Erleben
出处
期刊:IEEE Access
[Institute of Electrical and Electronics Engineers]
日期:2023-01-01
卷期号:11: 102460-102470
标识
DOI:10.1109/access.2023.3317512
摘要
The process of constructing precise geometry of human jaws from cone beam computed tomography (CBCT) scans is crucial for building finite element models and treatment planning.Despite the success of deep learning techniques, they struggle to accurately identify delicate features such as thin structures and gaps between the tooth-bone interfaces where periodontal ligament resides, especially when trained on limited data.Therefore, segmented geometries obtained through automated methods still require extensive manual adjustment to achieve a smooth and organic 3D geometry that is suitable for simulations.In this work, we require the model to provide anatomically correct segmentation of teeth and bones which preserves the space for the periodontal ligament layers.To accomplish the task with few accurate labels, we pre-train a modified MultiPlanar UNet as the backbone model using inferior segmentations, i.e., toothbone segmentation with no space in the tooth-bone interfaces, and fine-tune the model with a dedicated loss function over accurate delineations that considers the space.We demonstrate that our approach can produce proper tooth-bone segmentations with gap interfaces that are fit for simulations when applied to human jaw CBCT scans.Furthermore, we propose a marker-based watershed segmentation applied on the MultiPlanar UNet probability map to separate individual tooth.This has advantages when the segmentation task is challenged by common artifacts caused by restorative materials or similar intensities in the teethteeth interfaces in occurrence of crowded teeth phenomenon.Code and segmentation results are available at https://github.com/diku-dk/AutoJawSegment.
科研通智能强力驱动
Strongly Powered by AbleSci AI