An exact algorithm for the pickup and delivery problem with crowdsourced bids and transshipment

转运(资讯保安) 背包问题 计算机科学 集合(抽象数据类型) 数学优化 皮卡 路径(计算) 算法 最短路径问题 运筹学 数学 计算机网络 计算机安全 图像(数学) 理论计算机科学 图形 人工智能 程序设计语言
作者
Eric Su,Hu Qin,Jiliu Li,Kai Pan
出处
期刊:Transportation Research Part B-methodological [Elsevier]
卷期号:177: 102831-102831 被引量:1
标识
DOI:10.1016/j.trb.2023.102831
摘要

This paper addresses a pickup and delivery problem with crowdsourced bids and transshipment (PDPCBT) in last-mile delivery, where all requests can be satisfied by either using the own vehicle fleet or outsourcing with a small compensation to crowdshippers through transshipment facilities. The crowdshippers show their willingness to deliver by submitting bids to the e-commerce company. To minimize both the travel cost of vehicles and the compensation of crowdshippers, the routes of vehicles and the selection of bids need to be optimized simultaneously. We formulate the PDPCBT into an arc-based formulation and a route-based formulation, where the latter is strengthened by the subset row inequalities. Based on the route-based formulation, we present a branch-and-price-and-cut algorithm to solve it exactly. To deal with two possible ways of serving requests, we first decompose the corresponding pricing problem into a shortest path problem and a knapsack problem, and then tackle them in the same bi-directional labeling algorithm framework. We also discuss acceleration techniques and implementation details to speed up the performance of the overall procedure. Computational experiments are conducted on a set of classic request instances, together with a set of randomly generated bid instances. With a time limit of two hours, numerical results validate the efficiency and effectiveness of the proposed algorithm. Finally, sensitivity analysis and managerial findings are also provided on the PDPCBT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
烂漫驳发布了新的文献求助10
1秒前
三侠完成签到,获得积分10
1秒前
orixero应助迷人圣诞树很闲采纳,获得10
2秒前
2秒前
学渣向下发布了新的文献求助10
2秒前
3秒前
专注乐巧完成签到,获得积分20
3秒前
天天快乐应助闪闪的摩托采纳,获得10
3秒前
BreezyGallery发布了新的文献求助10
3秒前
sss完成签到,获得积分10
3秒前
壮观寄文完成签到 ,获得积分10
3秒前
zhangkaixin完成签到,获得积分10
3秒前
4秒前
1111完成签到,获得积分10
5秒前
5秒前
swsx1317发布了新的文献求助10
6秒前
camellia发布了新的文献求助10
6秒前
拼搏思卉发布了新的文献求助10
6秒前
captin发布了新的文献求助10
6秒前
lzzj完成签到,获得积分10
6秒前
yannis2020发布了新的文献求助10
6秒前
孤独秋白完成签到,获得积分10
6秒前
安详绿草发布了新的文献求助10
6秒前
喵喵完成签到 ,获得积分10
6秒前
楼寒天发布了新的文献求助10
7秒前
陈陌陌完成签到,获得积分10
7秒前
CipherSage应助科研通管家采纳,获得20
8秒前
丘比特应助标致小伙采纳,获得10
8秒前
咸鱼好翻身完成签到,获得积分10
8秒前
NexusExplorer应助科研通管家采纳,获得30
8秒前
北北完成签到 ,获得积分10
8秒前
8秒前
1221211应助科研通管家采纳,获得10
8秒前
8秒前
prosperp应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759