Quantitative Operando 7Li NMR Investigations of Silicon Anode Evolution during Fast Charging and Extended Cycling

阳极 化学 锂(药物) 电池(电) 电极 电化学 石墨 分析化学(期刊) 化学物理 离子 X射线光电子能谱 金属 纳米技术 核磁共振 材料科学 物理化学 内分泌学 功率(物理) 有机化学 物理 医学 量子力学 色谱法
作者
Kevin J. Sanders,Amanda A. Ciezki,Alexander Berno,Ion C. Halalay,Gillian R. Goward
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:145 (39): 21502-21513 被引量:13
标识
DOI:10.1021/jacs.3c07339
摘要

The development and optimization of fast battery charging protocols require detailed information regarding lithium speciation inside a battery. Nuclear magnetic resonance (NMR) spectroscopy has the unique capability of identifying the Li phases formed in an anode during Li-ion cell operation and quantifying their relative amounts. In addition, both Li metal films and dendrites are readily detected and quantified. Here, our recently reported parallel-plate resonator radio frequency (RF) probe and the cartridge-type single-layer full cell were used to track the behavior of Si electrodes during cycling and during fast charging. The LixSi compounds formed during electrochemical cycling exhibit an unexpected intrinsic nonequilibrium behavior at both slow and fast rates, evolving toward increasingly disordered local environments. The evolution with time of lithiated phases is nonlinear during both charging and discharging at constant current, unlike the case for pure graphite, and asymmetric between charge and discharge. During charging at rates of 1C, 2C, and 3C, metallic Li in both films and (to a lesser extent) dendritic forms are deposited on the Si anode. Part of the Li metal film formation is reversible, but a fraction remains on the electrode surface as dead Li, while all of the dendritic Li, even though formed in a considerably smaller amount, is entirely irreversible. Such performance-governing properties are critical to the development of fast-charging protocols for lithium-ion batteries (LIBs) and are exceptionally well evaluated and quantified by 7Li magnetic resonance strategies such as those presented here.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
秘书处堂发布了新的文献求助20
2秒前
2秒前
Hello应助Lee采纳,获得10
2秒前
1212发布了新的文献求助10
3秒前
yeqing发布了新的文献求助10
3秒前
咯咯哒发布了新的文献求助10
3秒前
luiii发布了新的文献求助10
4秒前
万能图书馆应助研友_RLNzvL采纳,获得30
5秒前
7秒前
H1998完成签到,获得积分10
7秒前
66发布了新的文献求助10
8秒前
dhts应助余余采纳,获得10
8秒前
王哥完成签到,获得积分10
8秒前
9秒前
56jhjl完成签到,获得积分10
9秒前
那位大人发布了新的文献求助10
9秒前
9秒前
平常的纸飞机完成签到,获得积分10
10秒前
FashionBoy应助王勾勾采纳,获得10
11秒前
12秒前
Jke完成签到,获得积分10
12秒前
12秒前
大个应助紫梦采纳,获得10
13秒前
yeqing完成签到,获得积分10
14秒前
淡定的曼易应助zy采纳,获得10
14秒前
14秒前
不语完成签到,获得积分10
15秒前
Andy_Cheung举报李方方方方求助涉嫌违规
15秒前
吴世勋发布了新的文献求助10
15秒前
wanci应助优等生采纳,获得10
16秒前
醒醒发布了新的文献求助10
16秒前
17秒前
tl完成签到,获得积分10
18秒前
临时演员发布了新的文献求助10
19秒前
zzz完成签到,获得积分10
19秒前
bkagyin应助123采纳,获得10
19秒前
20秒前
21秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3769083
求助须知:如何正确求助?哪些是违规求助? 3314085
关于积分的说明 10170792
捐赠科研通 3029180
什么是DOI,文献DOI怎么找? 1662260
邀请新用户注册赠送积分活动 794787
科研通“疑难数据库(出版商)”最低求助积分说明 756421