Quantitative Operando 7Li NMR Investigations of Silicon Anode Evolution during Fast Charging and Extended Cycling

阳极 化学 锂(药物) 电池(电) 电极 电化学 石墨 分析化学(期刊) 化学物理 离子 X射线光电子能谱 金属 纳米技术 核磁共振 材料科学 物理化学 内分泌学 功率(物理) 有机化学 物理 医学 量子力学 色谱法
作者
Kevin J. Sanders,Amanda A. Ciezki,Alexander Berno,Ion C. Halalay,Gillian R. Goward
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:145 (39): 21502-21513 被引量:13
标识
DOI:10.1021/jacs.3c07339
摘要

The development and optimization of fast battery charging protocols require detailed information regarding lithium speciation inside a battery. Nuclear magnetic resonance (NMR) spectroscopy has the unique capability of identifying the Li phases formed in an anode during Li-ion cell operation and quantifying their relative amounts. In addition, both Li metal films and dendrites are readily detected and quantified. Here, our recently reported parallel-plate resonator radio frequency (RF) probe and the cartridge-type single-layer full cell were used to track the behavior of Si electrodes during cycling and during fast charging. The LixSi compounds formed during electrochemical cycling exhibit an unexpected intrinsic nonequilibrium behavior at both slow and fast rates, evolving toward increasingly disordered local environments. The evolution with time of lithiated phases is nonlinear during both charging and discharging at constant current, unlike the case for pure graphite, and asymmetric between charge and discharge. During charging at rates of 1C, 2C, and 3C, metallic Li in both films and (to a lesser extent) dendritic forms are deposited on the Si anode. Part of the Li metal film formation is reversible, but a fraction remains on the electrode surface as dead Li, while all of the dendritic Li, even though formed in a considerably smaller amount, is entirely irreversible. Such performance-governing properties are critical to the development of fast-charging protocols for lithium-ion batteries (LIBs) and are exceptionally well evaluated and quantified by 7Li magnetic resonance strategies such as those presented here.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
哈哈哈哈完成签到,获得积分10
刚刚
沧海泪发布了新的文献求助10
1秒前
小胡先森应助凤凰山采纳,获得10
1秒前
一一完成签到,获得积分10
1秒前
惠惠发布了新的文献求助10
1秒前
shotgod完成签到,获得积分20
2秒前
科研通AI5应助蕾子采纳,获得10
2秒前
happy杨完成签到 ,获得积分10
2秒前
lichaoyes发布了新的文献求助10
2秒前
2秒前
Owen应助通~采纳,获得10
2秒前
封闭货车发布了新的文献求助10
3秒前
3秒前
www发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
5秒前
shotgod发布了新的文献求助10
5秒前
ling玲完成签到,获得积分10
5秒前
奔奔发布了新的文献求助10
5秒前
SweepingMonk应助虚心盼晴采纳,获得10
6秒前
7秒前
汉堡包应助XXF采纳,获得10
7秒前
wzh完成签到,获得积分10
7秒前
海底落日完成签到,获得积分20
7秒前
8秒前
科研通AI5应助123采纳,获得30
8秒前
烟花应助pi采纳,获得10
9秒前
汉堡包应助小木木壮采纳,获得10
9秒前
9秒前
yl发布了新的文献求助30
9秒前
菲菲呀发布了新的文献求助10
9秒前
9秒前
科研通AI5应助禾泽采纳,获得30
10秒前
坚强的樱发布了新的文献求助10
10秒前
英俊梦槐完成签到,获得积分10
10秒前
123发布了新的文献求助10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794