化学
催化作用
位阻效应
析氧
氧气
反应中间体
光化学
反应机理
化学物理
结晶学
立体化学
物理化学
电化学
有机化学
电极
作者
Yixin Hao,Sung‐Fu Hung,Wen‐Jing Zeng,Ye Wang,Chenchen Zhang,Chun‐Han Kuo,Luqi Wang,Sheng Zhao,Ying Zhang,Han‐Yi Chen,Shengjie Peng
摘要
Designing stable single-atom electrocatalysts with lower energy barriers is urgent for the acidic oxygen evolution reaction. In particular, the atomic catalysts are highly dependent on the kinetically sluggish acid-base mechanism, limiting the reaction paths of intermediates. Herein, we successfully manipulate the steric localization of Ru single atoms at the Co3O4 surface to improve acidic oxygen evolution by precise control of the anchor sites. The delicate structure design can switch the reaction mechanism from the lattice oxygen mechanism (LOM) to the optimized adsorbate evolution mechanism (AEM). In particular, Ru atoms embedded into cation vacancies reveal an optimized mechanism that activates the proton donor-acceptor function (PDAM), demonstrating a new single-atom catalytic pathway to circumvent the classic scaling relationship. Steric interactions with intermediates at the anchored Ru-O-Co interface played a primary role in optimizing the intermediates' conformation and reducing the energy barrier. As a comparison, Ru atoms confined to the surface sites exhibit a lattice oxygen mechanism for the oxygen evolution process. As a result, the delicate atom control of the spatial position presents a 100-fold increase in mass activity from 36.96 A gRu(ads)-1 to 4012.11 A gRu(anc)-1 at 1.50 V. These findings offer new insights into the precise control of single-atom catalytic behavior.
科研通智能强力驱动
Strongly Powered by AbleSci AI