Projection subspace based low-rank representation for sparse hyperspectral unmixing

高光谱成像 子空间拓扑 丰度估计 投影(关系代数) 秩(图论) 稀疏矩阵 计算机科学 人工智能 基质(化学分析) 模式识别(心理学) 数据立方体 矩阵分解 数学 稀疏逼近 算法 丰度(生态学) 数据挖掘 特征向量 组合数学 物理 生物 复合材料 高斯分布 量子力学 材料科学 渔业
作者
Fanghua Zhang,Ting‐Zhu Huang,Jie Huang
出处
期刊:Applied Mathematical Modelling [Elsevier BV]
卷期号:125: 463-481 被引量:1
标识
DOI:10.1016/j.apm.2023.10.009
摘要

With a known large spectral library, sparse hyperspectral unmixing has been taken as a hotspot in academia all these years. Its fundamental task is to estimate the abundance fractions of the spectral signatures in mixed pixels. Typically, the sparse and low-rank properties of the abundance matrix have been exploited simultaneously in the literature. Many studies only consider the low-rank property of the entire abundance matrix, however, pay less attention to the property of each abundance map. In this paper, we propose a new way to describe the low-rank prior. Firstly, an abundance cube is obtained by concatenating the abundance maps along the third dimension. We construct a lower-dimensional projection subspace of the abundance cube using a projection matrix, and the low-rankness of the abundance matrix is preserved during the projection process. Secondly, we consider the low-rank property by directly analyzing the abundance maps in the projection subspace. Finally, two algorithms, namely: projection subspace low-rank structure for sparse unmixing and projection subspace low-rank structure for bilateral sparse unmixing, are proposed based on different sparse structures of the abundance matrix. Both simulated and real-data experiments demonstrate that compared with classical sparse unmixing algorithms, the proposed ones obtain better unmixing results as well as cut down on calculation time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助诸语薇采纳,获得10
刚刚
李爱国应助葡萄柚益珺多采纳,获得10
1秒前
三十七度医完成签到,获得积分10
1秒前
SciGPT应助dandan采纳,获得30
2秒前
2秒前
Hello应助无聊的蚂蚁采纳,获得10
2秒前
身处人海发布了新的文献求助10
3秒前
ding应助lan采纳,获得10
3秒前
wisdom应助王菲采纳,获得10
3秒前
李健应助火星上香菇采纳,获得10
3秒前
赘婿应助RR采纳,获得10
5秒前
5秒前
5秒前
LYSM应助危机的雍采纳,获得10
6秒前
小蘑菇应助哇owao采纳,获得10
6秒前
摸鱼大使应助光亮白山采纳,获得10
6秒前
7秒前
7秒前
欢呼的寻双完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
尤川发布了新的文献求助30
8秒前
lingyu发布了新的文献求助10
8秒前
白马非马发布了新的文献求助10
9秒前
jenningseastera应助勤恳小李采纳,获得10
9秒前
Suixq完成签到,获得积分10
9秒前
10秒前
theThreeMagi完成签到,获得积分10
10秒前
10秒前
孤巷的猫完成签到,获得积分10
11秒前
ZZZ发布了新的文献求助10
11秒前
Alicia完成签到 ,获得积分10
11秒前
zhangyapeng完成签到,获得积分10
11秒前
12秒前
13秒前
13秒前
13秒前
开心荔枝发布了新的文献求助10
13秒前
甜甜的采蓝应助小蜗采纳,获得30
14秒前
李某某发布了新的文献求助10
14秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961465
求助须知:如何正确求助?哪些是违规求助? 3507798
关于积分的说明 11138163
捐赠科研通 3240268
什么是DOI,文献DOI怎么找? 1790870
邀请新用户注册赠送积分活动 872609
科研通“疑难数据库(出版商)”最低求助积分说明 803288