Projection subspace based low-rank representation for sparse hyperspectral unmixing

高光谱成像 子空间拓扑 丰度估计 投影(关系代数) 秩(图论) 稀疏矩阵 计算机科学 人工智能 基质(化学分析) 模式识别(心理学) 数据立方体 矩阵分解 数学 稀疏逼近 算法 丰度(生态学) 数据挖掘 特征向量 组合数学 物理 材料科学 量子力学 渔业 高斯分布 复合材料 生物
作者
Fanghua Zhang,Ting‐Zhu Huang,Jie Huang
出处
期刊:Applied Mathematical Modelling [Elsevier]
卷期号:125: 463-481 被引量:1
标识
DOI:10.1016/j.apm.2023.10.009
摘要

With a known large spectral library, sparse hyperspectral unmixing has been taken as a hotspot in academia all these years. Its fundamental task is to estimate the abundance fractions of the spectral signatures in mixed pixels. Typically, the sparse and low-rank properties of the abundance matrix have been exploited simultaneously in the literature. Many studies only consider the low-rank property of the entire abundance matrix, however, pay less attention to the property of each abundance map. In this paper, we propose a new way to describe the low-rank prior. Firstly, an abundance cube is obtained by concatenating the abundance maps along the third dimension. We construct a lower-dimensional projection subspace of the abundance cube using a projection matrix, and the low-rankness of the abundance matrix is preserved during the projection process. Secondly, we consider the low-rank property by directly analyzing the abundance maps in the projection subspace. Finally, two algorithms, namely: projection subspace low-rank structure for sparse unmixing and projection subspace low-rank structure for bilateral sparse unmixing, are proposed based on different sparse structures of the abundance matrix. Both simulated and real-data experiments demonstrate that compared with classical sparse unmixing algorithms, the proposed ones obtain better unmixing results as well as cut down on calculation time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助xxqaq采纳,获得10
刚刚
刚刚
1秒前
研友_VZG7GZ应助大地采纳,获得10
2秒前
guo发布了新的文献求助10
2秒前
3秒前
4秒前
别止发布了新的文献求助10
4秒前
你好明天应助霍嘉文采纳,获得10
4秒前
5秒前
kk完成签到,获得积分10
5秒前
orixero应助完美的him采纳,获得10
6秒前
奋斗青完成签到 ,获得积分10
6秒前
6秒前
tcmlida完成签到,获得积分10
6秒前
7秒前
夹心发布了新的文献求助10
7秒前
xxqaq完成签到,获得积分20
7秒前
甜美元冬完成签到,获得积分10
8秒前
8秒前
阿榆完成签到,获得积分10
8秒前
牛牛发布了新的文献求助20
8秒前
秉烛游完成签到,获得积分10
9秒前
共享精神应助激情的羊采纳,获得10
9秒前
hyy发布了新的文献求助20
9秒前
9秒前
爱笑映菡发布了新的文献求助10
10秒前
听听发布了新的文献求助50
10秒前
科研小狗完成签到 ,获得积分10
11秒前
11秒前
嗡嗡完成签到,获得积分10
11秒前
12秒前
hzw完成签到,获得积分20
13秒前
小蘑菇应助秉烛游采纳,获得10
14秒前
chy发布了新的文献求助10
14秒前
奋斗中的阿大夫关注了科研通微信公众号
14秒前
15秒前
guyu91guyu完成签到,获得积分10
15秒前
15秒前
在水一方应助Tina采纳,获得10
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309103
求助须知:如何正确求助?哪些是违规求助? 2942468
关于积分的说明 8508989
捐赠科研通 2617498
什么是DOI,文献DOI怎么找? 1430174
科研通“疑难数据库(出版商)”最低求助积分说明 664072
邀请新用户注册赠送积分活动 649239