死区
控制理论(社会学)
趋同(经济学)
约束(计算机辅助设计)
模式(计算机接口)
滑模控制
跟踪误差
计算机科学
功能(生物学)
跟踪(教育)
人工神经网络
方案(数学)
控制(管理)
工程类
数学
非线性系统
人工智能
物理
教育学
经济增长
海洋学
生物
操作系统
心理学
量子力学
进化生物学
经济
地质学
数学分析
机械工程
作者
Yu Zhang,Linghuan Kong,Shuang Zhang,Xinbo Yu,Yu Liu
出处
期刊:IEEE transactions on systems, man, and cybernetics
[Institute of Electrical and Electronics Engineers]
日期:2023-12-01
卷期号:53 (12): 7814-7826
被引量:3
标识
DOI:10.1109/tsmc.2023.3301662
摘要
In this article, neural network (NN)-based sliding mode control schemes are proposed for an n-link robotic manipulator with system uncertainties, input deadzone, and external perturbations. A novel error-shifting function is proposed to release initial conditions. NNs are employed to approximate the unknown parameters of both system uncertainties and input deadzone. To update the sliding mode scheme, two advanced sliding mode surfaces with error-shifting function and barrier function are proposed to reduce the dependency of prior information and to realize a finite time convergence result, collectively. It should be pointed out that the proposed methods do not require initial states to satisfy the prescribed constraint caused by the barrier function and can be applied under unknown initial conditions. Furthermore, finite-time convergence for both tracking errors and NN weights is guaranteed. The effectiveness of the proposed schemes is demonstrated by simulation and experiments on the KINOVA robot.
科研通智能强力驱动
Strongly Powered by AbleSci AI