Artificial intelligence and heart failure: A state‐of‐the‐art review

心力衰竭 亚临床感染 医学 疾病 射血分数 重症监护医学 危险分层 人工智能 机器学习 计算机科学 内科学
作者
Muhammad Shahzeb Khan,Muhammad Sameer Arshad,Stephen J. Greene,Harriette G.C. Van Spall,Ambarish Pandey,Sreekanth Vemulapalli,Eric D. Perakslis,Javed Butler
出处
期刊:European Journal of Heart Failure [Wiley]
卷期号:25 (9): 1507-1525 被引量:17
标识
DOI:10.1002/ejhf.2994
摘要

Heart failure (HF) is a heterogeneous syndrome affecting more than 60 million individuals globally. Despite recent advancements in understanding of the pathophysiology of HF, many issues remain including residual risk despite therapy, understanding the pathophysiology and phenotypes of patients with HF and preserved ejection fraction, and the challenges related to integrating a large amount of disparate information available for risk stratification and management of these patients. Risk prediction algorithms based on artificial intelligence (AI) may have superior predictive ability compared to traditional methods in certain instances. AI algorithms can play a pivotal role in the evolution of HF care by facilitating clinical decision making to overcome various challenges such as allocation of treatment to patients who are at highest risk or are more likely to benefit from therapies, prediction of adverse outcomes, and early identification of patients with subclinical disease or worsening HF. With the ability to integrate and synthesize large amounts of data with multidimensional interactions, AI algorithms can supply information with which physicians can improve their ability to make timely and better decisions. In this review, we provide an overview of the AI algorithms that have been developed for establishing early diagnosis of HF, phenotyping HF with preserved ejection fraction, and stratifying HF disease severity. This review also discusses the challenges in clinical deployment of AI algorithms in HF, and the potential path forward for developing future novel learning-based algorithms to improve HF care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
eular完成签到 ,获得积分10
刚刚
2秒前
深情安青应助zzzyyyuuu采纳,获得10
3秒前
lg发布了新的文献求助10
3秒前
科目三应助huangrui采纳,获得10
4秒前
5秒前
李健的粉丝团团长应助hy采纳,获得10
6秒前
6秒前
timo发布了新的文献求助10
7秒前
席楠发布了新的文献求助10
7秒前
JayL完成签到,获得积分10
8秒前
8秒前
10秒前
于广喜发布了新的文献求助10
10秒前
10秒前
搜集达人应助wangayting采纳,获得10
11秒前
FuelCell发布了新的文献求助10
11秒前
大个应助爱听歌的明轩采纳,获得10
14秒前
14秒前
Crane发布了新的文献求助10
14秒前
16秒前
小马甲应助龙傲天采纳,获得10
18秒前
于广喜完成签到,获得积分10
18秒前
18秒前
18秒前
yoyo发布了新的文献求助10
19秒前
hy发布了新的文献求助10
22秒前
wangayting发布了新的文献求助10
23秒前
动听皮带发布了新的文献求助30
27秒前
所所应助Crane采纳,获得10
27秒前
没得完成签到 ,获得积分10
28秒前
桑桑完成签到,获得积分20
28秒前
打打应助归谷采纳,获得10
29秒前
30秒前
31秒前
NCL发布了新的文献求助10
31秒前
32秒前
科研通AI2S应助柔之采纳,获得10
32秒前
33秒前
无花果应助DE2022采纳,获得10
33秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141175
求助须知:如何正确求助?哪些是违规求助? 2792145
关于积分的说明 7801676
捐赠科研通 2448353
什么是DOI,文献DOI怎么找? 1302516
科研通“疑难数据库(出版商)”最低求助积分说明 626613
版权声明 601237