阴极
材料科学
电解质
插层(化学)
涂层
化学工程
阳极
电极
石墨
纳米技术
复合材料
无机化学
化学
工程类
物理化学
作者
Zhouliang Tan,Yunjiao Li,Changlong Lei,Yue Li,Xiaoming Xi,Shijie Jiang,Feixiang Wu,Zhenjiang He
出处
期刊:Small
[Wiley]
日期:2023-09-27
卷期号:20 (5)
被引量:4
标识
DOI:10.1002/smll.202305618
摘要
Abstract Planar gliding along with anisotropic lattice strain of single‐crystalline nickel‐rich cathodes (SCNRC) at highly delithiated states will induce severe delamination cracking that seriously deteriorates LIBs’ cyclability. To address these issues, a novel lattice‐matched MgTiO 3 (MTO) layer, which exhibits same lattice structure as Ni‐rich cathodes, is rationally constructed on single‐crystalline LiNi 0.9 Co 0.05 Mn 0.05 O 2 (SC90) for ultrastable mechanical integrity. Intensive in/ex situ characterizations combined with theoretical calculations and finite element analysis suggest that the uniform MTO coating layer prevents direct contact between SC90 and organic electrolytes and enables rapid Li‐ion diffusion with depressed Li‐deficiency, thereby stabilizing the interfacial structure and accommodating the mechanical stress of SC90. More importantly, a superstructure is simultaneously formed in SC90, which can effectively alleviate the anisotropic lattice changes and decrease cation mobility during successive high‐voltage de/intercalation processes. Therefore, the as‐acquired MTO‐modified SC90 cathode displays desirable capacity retention and high‐voltage stability. When paired with commercial graphite anodes, the pouch‐type cells with the MTO‐modified SC90 can deliver a high capacity of 175.2 mAh g −1 with 89.8% capacity retention after 500 cycles. This lattice‐matching coating strategy demonstrate a highly effective pathway to maintain the structural and interfacial stability in electrode materials, which can be a pioneering breakthrough in commercialization of Ni‐rich cathodes.
科研通智能强力驱动
Strongly Powered by AbleSci AI