已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

DsP-YOLO: An anchor-free network with DsPAN for small object detection of multiscale defects

计算机科学 目标检测 特征(语言学) 人工智能 路径(计算) 对象(语法) 任务(项目管理) 推论 图层(电子) 模式识别(心理学) 数据挖掘 计算机视觉 工程类 哲学 语言学 化学 系统工程 有机化学 程序设计语言
作者
Yan Zhang,Haifeng Zhang,Qingqing Huang,Yan Han,Minghang Zhao
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:241: 122669-122669 被引量:70
标识
DOI:10.1016/j.eswa.2023.122669
摘要

Industrial defect detection is of great significance to ensure the quality of industrial products. The surface defects of industrial products are characterized by multiple scales, multiple types, abundant small objects, and complex background interference. In particular, small object detection of multiscale defects under complex background interference poses significant challenges for defect detection tasks. How to improve the algorithm's ability to detect industrial defects, especially in enhancing the detection capabilities of small-sized defects, while ensuring that the inference speed is not overly affected is a long-term prominent challenge. Aiming at achieving accurate and fast detection of industrial defects, this paper proposes an anchor-free network with DsPAN for small object detection. The core of this method is to propose a new idea i.e., feature enhancement in the feature fusion network for the feature information of small-size objects. Firstly, anchor-free YOLOv8 is adopted as the basic framework for detection to eliminate the affections of hyperparameters related to anchors, as well as to improve the detection capability of multi-scale and small-size defects. Secondly, considering the PAN path (top layer of neural networks for feature fusion) is more task-specific, we advocate that the underlying feature map of the PAN path is more vulnerable to small object detection. Hence, we in-depth study the PAN path and point out that the standard PAN will encounter several drawbacks caused by losing local details and position information in deep layer. As an alternative, we propose a lightweight and detail-sensitive PAN (DsPAN) for small object detection of multiscale defects by designing an attention mechanism embedded feature transformation module(LCBHAM) and optimizing the lightweight implementation. Our proposed DsPAN is very easy to be incorporated in YOLO series framework. The proposed method is evaluated on three public datasets, NEU-DET, PCB-DET, and GC10-DET. The mAP of the method is 80.4%, 95.8%, and 76.3%, which are 3.6%, 2.1%, and 3.9% higher than that of YOLOv8 and significantly higher than the state-of-the-art (SOTA) detection methods. Also, the method achieves the second-highest inference speed among the thirteen models tested. The results indicate that DsP-YOLO is expected to be used for real-time defect detection in industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助逗荼消新卜桐采纳,获得10
刚刚
1秒前
祺祺完成签到,获得积分10
2秒前
留胡子的思真完成签到,获得积分10
3秒前
rzxhygr完成签到,获得积分10
7秒前
7秒前
7秒前
小乔发布了新的文献求助10
10秒前
星叶完成签到 ,获得积分10
10秒前
活泼的断秋完成签到,获得积分10
16秒前
16秒前
和谐曼凝完成签到 ,获得积分10
18秒前
小蘑菇应助活泼的断秋采纳,获得10
20秒前
Yichen Zhang完成签到,获得积分10
21秒前
魁梧的鸿煊完成签到 ,获得积分10
22秒前
星期天发布了新的文献求助100
22秒前
27秒前
香蕉觅云应助xmqaq采纳,获得10
27秒前
zzx完成签到,获得积分20
30秒前
mumu完成签到 ,获得积分10
31秒前
田様应助小乔采纳,获得10
33秒前
小张想发刊完成签到 ,获得积分10
33秒前
研two发布了新的文献求助10
35秒前
甜美宛儿发布了新的文献求助10
36秒前
江彪完成签到,获得积分10
39秒前
最佳完成签到 ,获得积分10
39秒前
冰棒比冰冰完成签到 ,获得积分10
40秒前
红枫没有微雨怜完成签到 ,获得积分10
44秒前
fsznc完成签到 ,获得积分0
50秒前
甜美宛儿完成签到,获得积分10
53秒前
56秒前
迟大猫应助科研通管家采纳,获得10
58秒前
遇上就这样吧应助李剑鸿采纳,获得30
58秒前
高_应助科研通管家采纳,获得10
58秒前
58秒前
科研通AI5应助科研通管家采纳,获得10
59秒前
Grayball应助科研通管家采纳,获得10
59秒前
Grayball应助科研通管家采纳,获得10
59秒前
Grayball应助科研通管家采纳,获得10
59秒前
59秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671119
求助须知:如何正确求助?哪些是违规求助? 3228049
关于积分的说明 9778081
捐赠科研通 2938277
什么是DOI,文献DOI怎么找? 1609808
邀请新用户注册赠送积分活动 760461
科研通“疑难数据库(出版商)”最低求助积分说明 735962