Double DQN-Based Coevolution for Green Distributed Heterogeneous Hybrid Flowshop Scheduling With Multiple Priorities of Jobs

拖延 数学优化 计算机科学 调度(生产过程) 作业车间调度 流水车间调度 分布式计算 人口 启发式 操作员(生物学) 人工智能 数学 地铁列车时刻表 生物化学 化学 人口学 抑制因子 社会学 转录因子 基因 操作系统
作者
Rui Li,Wenyin Gong,Ling Wang,Chao Lu,Zixiao Pan,Xinying Zhuang
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (4): 6550-6562 被引量:15
标识
DOI:10.1109/tase.2023.3327792
摘要

Distributed manufacturing involving heterogeneous factories presents significant challenges to enterprises. Furthermore, the need to prioritize various jobs based on order urgency and customer importance further complicates the scheduling process. Consequently, this study addresses the practical issue by tackling the distributed heterogeneous hybrid flow shop scheduling problem with multiple priorities of jobs (DHHFSP-MPJ). The primary objective is to simultaneously minimize the total weighted tardiness and total energy consumption. To solve DHHFSP-MPJ, a double deep Q-network-based co-evolution (D2QCE) is developed with four features: i) The global and local searches are allocated into two populations to balance computational resources; ii) A hybrid heuristic strategy is proposed to obtain an initialized population with great convergence and diversity; iii) Four knowledge-based neighborhood structures are proposed to accelerate converging. Next, the double deep Q-Network is applied to learn operator selection; and iv) An energy-efficient strategy is presented to save energy. To verify the effectiveness of D2QCE, five state-of-the-art algorithms are compared on 20 instances and a real-world case. The results of numerical experiments indicate that: i) The D2QN can learn fast by only consuming a few computation resources and can select the best operator. ii) Combining D2QN and co-evolution can vastly improve the performance of evolutionary algorithms for solving distributed shop scheduling. iii) The proposed D2QCE has better performance than state-of-the-arts for DHHFSP-MPJ Note to Practitioners —This paper is inspired by a real-world problem encountered in blanking workshop systems within the manufacturing of large engineering equipment. In this practical scenario, jobs come with varying priorities and distinct due dates. Balancing these priority and due date constraints while efficiently scheduling a considerable volume of jobs to enhance enterprise profitability poses a significant challenge. Thus, this scheduling problem is abstracted to the distributed heterogeneous hybrid flow shop scheduling problem with multiple priorities of jobs. The objectives are minimizing weighted due date delay and total energy consumption. Notably, this model has never been studied before. To address this, we've formulated a mixed-integer linear programming model and developed a novel co-evolutionary algorithm based on double deep Q-networks (DQN). Our approach introduces several key components. First, we present a co-evolutionary framework to strike a balance between global and local search aspects. Additionally, we've devised three problem-specific enhancement strategies to expedite convergence, which include hybrid initialization, local search techniques, and energy-saving measures. To accelerate the learning process of selecting the optimal operator with minimal computational resources, we employ the double DQN. Experimental results demonstrate the superior performance of our approach, outperforming state-of-the-art algorithms when applied to a real-world case. In summary, this work proposes an extended DHHFSP and provides a case of designing the deep learning-assisted evolutionary algorithm. However, online deep reinforcement learning (DRL) consumes additional time, and the generalization of online DRL needs to be improved. In future research, we will consider the dynamic events such as new jobs insert and due date change for the blanking workshop. Moreover, the end-to-end model will be considered to save energy and realize sustainable DRL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
coolplex完成签到 ,获得积分10
1秒前
652183758完成签到 ,获得积分10
7秒前
范白容完成签到 ,获得积分10
13秒前
baitaowl完成签到 ,获得积分10
15秒前
qiancib202完成签到,获得积分10
16秒前
深情安青应助DrleedsG采纳,获得10
26秒前
t铁核桃1985完成签到 ,获得积分10
30秒前
马大翔完成签到,获得积分0
33秒前
六一儿童节完成签到 ,获得积分10
35秒前
btcat完成签到,获得积分10
37秒前
Pauline完成签到 ,获得积分10
38秒前
草莓熊1215完成签到 ,获得积分10
43秒前
1111完成签到,获得积分10
43秒前
泡泡茶壶o完成签到 ,获得积分10
59秒前
clare完成签到 ,获得积分10
1分钟前
1分钟前
竺兰舞发布了新的文献求助10
1分钟前
DrleedsG发布了新的文献求助10
1分钟前
甜甜圈完成签到 ,获得积分10
1分钟前
竺兰舞完成签到,获得积分20
1分钟前
00完成签到 ,获得积分10
1分钟前
ght完成签到 ,获得积分10
1分钟前
cq_2完成签到,获得积分10
1分钟前
慕青应助科研通管家采纳,获得10
1分钟前
权小夏完成签到 ,获得积分10
1分钟前
南风完成签到 ,获得积分10
2分钟前
情怀应助咿呀咿呀采纳,获得10
2分钟前
枫威完成签到 ,获得积分10
2分钟前
2分钟前
柒八染完成签到 ,获得积分10
2分钟前
咿呀咿呀发布了新的文献求助10
2分钟前
2分钟前
2分钟前
研究新人完成签到,获得积分10
2分钟前
相南相北完成签到 ,获得积分10
2分钟前
回首不再是少年完成签到,获得积分0
2分钟前
清秀的怀蕊完成签到 ,获得积分10
2分钟前
小蘑菇应助高大沧海采纳,获得10
2分钟前
妮子拉完成签到,获得积分10
2分钟前
黑包包大人完成签到,获得积分10
2分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Sociocultural theory and the teaching of second languages 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3339051
求助须知:如何正确求助?哪些是违规求助? 2967054
关于积分的说明 8627952
捐赠科研通 2646523
什么是DOI,文献DOI怎么找? 1449277
科研通“疑难数据库(出版商)”最低求助积分说明 671343
邀请新用户注册赠送积分活动 660176