Theoretical and Experimental Advances in High-Pressure Behaviors of Nanoparticles

纳米材料 纳米技术 纳米颗粒 化学 钙钛矿(结构) 相变 化学物理 相(物质) 氮化物 材料科学 结晶学 物理 热力学 有机化学 图层(电子)
作者
Lingyao Meng,Tuan V. Vu,Louise Criscenti,Tuan A. Ho,Yang Qin,Hongyou Fan
出处
期刊:Chemical Reviews [American Chemical Society]
卷期号:123 (16): 10206-10257 被引量:21
标识
DOI:10.1021/acs.chemrev.3c00169
摘要

Using compressive mechanical forces, such as pressure, to induce crystallographic phase transitions and mesostructural changes while modulating material properties in nanoparticles (NPs) is a unique way to discover new phase behaviors, create novel nanostructures, and study emerging properties that are difficult to achieve under conventional conditions. In recent decades, NPs of a plethora of chemical compositions, sizes, shapes, surface ligands, and self-assembled mesostructures have been studied under pressure by in-situ scattering and/or spectroscopy techniques. As a result, the fundamental knowledge of pressure–structure–property relationships has been significantly improved, leading to a better understanding of the design guidelines for nanomaterial synthesis. In the present review, we discuss experimental progress in NP high-pressure research conducted primarily over roughly the past four years on semiconductor NPs, metal and metal oxide NPs, and perovskite NPs. We focus on the pressure-induced behaviors of NPs at both the atomic- and mesoscales, inorganic NP property changes upon compression, and the structural and property transitions of perovskite NPs under pressure. We further discuss in depth progress on molecular modeling, including simulations of ligand behavior, phase-change chalcogenides, layered transition metal dichalcogenides, boron nitride, and inorganic and hybrid organic–inorganic perovskites NPs. These models now provide both mechanistic explanations of experimental observations and predictive guidelines for future experimental design. We conclude with a summary and our insights on future directions for exploration of nanomaterial phase transition, coupling, growth, and nanoelectronic and photonic properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
pentjy发布了新的文献求助30
1秒前
冬天好大的雨完成签到,获得积分10
2秒前
一碗鱼完成签到,获得积分10
3秒前
852应助乐闻采纳,获得10
3秒前
请叫我湿人人完成签到,获得积分10
3秒前
星辰大海应助卡图兰采纳,获得10
3秒前
甜美代秋发布了新的文献求助10
4秒前
张俊敏发布了新的文献求助10
5秒前
5秒前
7秒前
王梦豪完成签到,获得积分10
7秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
包包琪发布了新的文献求助10
10秒前
11秒前
科研怪完成签到 ,获得积分10
11秒前
淬h发布了新的文献求助10
12秒前
朝朝发布了新的文献求助10
12秒前
13秒前
超级炎彬发布了新的文献求助30
14秒前
14秒前
14秒前
14秒前
15秒前
reirei应助张俊敏采纳,获得10
16秒前
活力菠萝完成签到,获得积分10
17秒前
传奇3应助向北游采纳,获得10
17秒前
17秒前
乔垣结衣发布了新的文献求助30
18秒前
18秒前
19秒前
20秒前
20秒前
上官若男应助zhuan采纳,获得10
20秒前
20秒前
王梦豪发布了新的文献求助10
21秒前
pugongying完成签到,获得积分10
21秒前
1111完成签到,获得积分10
21秒前
ZQP发布了新的文献求助10
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970048
求助须知:如何正确求助?哪些是违规求助? 3514739
关于积分的说明 11175783
捐赠科研通 3250115
什么是DOI,文献DOI怎么找? 1795198
邀请新用户注册赠送积分活动 875630
科研通“疑难数据库(出版商)”最低求助积分说明 804951