Evaluation of Metallic Parts Defects to Determine Repair Process Strategies through Laser Metal Deposition

过程(计算) 沉积(地质) 机械工程 计算机科学 材料科学 自动化 点(几何) 工程类 几何学 古生物学 数学 沉积物 生物 操作系统
作者
M. Cruz,Daniel Afonso,Miguel Oliveira
出处
期刊:Key Engineering Materials 卷期号:958: 77-87
标识
DOI:10.4028/p-h4lzmq
摘要

With technological advances, additive manufacturing processes have been gaining prominence in several industrial areas including maintenance, repair, and overhaul (MRO) processes. A process with great potential for repairing and rebuilding metal parts is laser metal deposition (LMD) technology. Despite the high potential, LMD implementation in the repair industry is not straightforward, due to the geometry variability of parts and damages to be repaired. This paper presents a repairability study that evaluates the remaining volume of the repair of different types of damages in AISI 316L parts by LMD, and determines the most appropriate deposition strategies to adapt to the repair process. This study involves the characterization and classification of common defects in metallic parts and the development of a design of experiments, in which, given the damage geometry, volume, and location, the best repair toolpath to be adopted and the ideal parameterization for the repair process are determined. The ability to correct part damage is assessed from a geometric, mechanical and energetic approach, and explores the possibility of including LMD in an adaptive and intelligent MRO system. The result of this work establishes a new deposition strategy approach based on a modified contour-parallel deposition strategy for repairing metal parts. This study also demonstrates that in surface damage cases, a fixed point strategy is highly effective, especially when using higher laser power values and larger laser spot diameters, enabling an easier process automation. However, in edge and corner damage cases, the best repair approach is using trajectory strategies that constitute material support between deposition tracks and layers. Additionally, it is demonstrated that the corners are the most critical zones that require temperature control throughout the entire repair process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灵巧荆发布了新的文献求助10
1秒前
和谐续完成签到 ,获得积分10
1秒前
李健应助是天使呢采纳,获得10
1秒前
1秒前
2秒前
香菜兔子完成签到,获得积分10
2秒前
茶艺大师づ完成签到,获得积分0
2秒前
蓝愿完成签到,获得积分10
2秒前
3秒前
努力的小狗屁完成签到,获得积分10
3秒前
3秒前
慕青应助彬彬采纳,获得10
4秒前
飘逸蘑菇关注了科研通微信公众号
4秒前
八十关注了科研通微信公众号
5秒前
5秒前
5秒前
6秒前
7秒前
摸鱼摸鱼摸摸鱼完成签到,获得积分10
7秒前
xiaoputaor完成签到 ,获得积分10
8秒前
万能图书馆应助yana采纳,获得20
9秒前
兽医12138完成签到 ,获得积分10
9秒前
苏苏发布了新的文献求助10
9秒前
烯灯完成签到,获得积分10
10秒前
慕青应助哈哈采纳,获得10
10秒前
Ava应助朴素的鸡采纳,获得10
10秒前
852应助沧海泪采纳,获得10
10秒前
tao发布了新的文献求助10
10秒前
苏兴龙发布了新的文献求助10
10秒前
爱思考的我完成签到,获得积分10
11秒前
zzznznnn发布了新的文献求助10
11秒前
科研通AI5应助junzilan采纳,获得10
12秒前
12秒前
12秒前
田様应助SCI采纳,获得10
13秒前
无花果应助帅气惜霜采纳,获得10
14秒前
Qiuju发布了新的文献求助10
14秒前
Z小姐发布了新的文献求助10
15秒前
义气发卡完成签到 ,获得积分10
16秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794