Advancing Carbon Fiber Composite Inspection: Deep Learning-Enabled Defect Localization and Sizing via 3-Dimensional U-Net Segmentation of Ultrasonic Data

尺寸 分割 超声波传感器 材料科学 超声波检测 下降(电信) 无损检测 计算机科学 人工智能 声学 物理 艺术 电信 量子力学 视觉艺术
作者
Shaun McKnight,Vedran Tunukovic,S. Gareth Pierce,Ehsan Mohseni,Richard Pyle,Charles MacLeod,Tom O’Hare
出处
期刊:IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tuffc.2024.3408314
摘要

In Non-Destructive Evaluation (NDE), accurately characterizing defects within components relies on accurate sizing and localization to evaluate the severity or criticality of defects. This study presents for the first time a deep learning methodology using 3-Dimensional (3D) U-Net to localize and size defects in Carbon Fibre Reinforced Polymer (CFRP) composites through volumetric segmentation of ultrasonic testing data. Using a previously developed approach, synthetic training data closely representative of experimental data was used for the automatic generation of ground truth segmentation masks. The model's performance was compared to the conventional amplitude 6 dB drop analysis method used in industry against ultrasonic defect responses from 40 defects fabricated in CFRP components. The results showed good agreement with the 6 dB drop method for in-plane localization and excellent through-thickness localization, with Mean Absolute Errors (MAE) of 0.57 mm and 0.08 mm, respectively. Initial sizing results consistently oversized defects with a 55% higher mean average error than the 6 dB drop method. However, when a correction factor was applied to account for variation between the experimental and synthetic domains the final sizing accuracy resulted in a 35% reduction in MAE compared to the 6 dB drop technique. By working with volumetric ultrasonic data (as opposed to 2D images) this approach reduces pre-processing (such as signal gating) and allows for the generation of 3D defect masks which can be used for the generation of computer aided design files; greatly reducing the qualification reporting burden of NDE operators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助BK2008采纳,获得10
刚刚
王w完成签到,获得积分20
1秒前
2秒前
JamesPei应助YY采纳,获得10
4秒前
Hello应助成就觅翠采纳,获得10
4秒前
翻斗花园第一突破手牛爷爷完成签到,获得积分10
5秒前
科研蠢狗发布了新的文献求助10
5秒前
5秒前
1111发布了新的文献求助100
6秒前
屋子发布了新的文献求助20
6秒前
7秒前
cpli完成签到,获得积分10
7秒前
KatzeBaliey完成签到,获得积分10
7秒前
8秒前
10秒前
oydent发布了新的文献求助10
11秒前
儒雅慕灵完成签到,获得积分20
12秒前
善学以致用应助Fancy采纳,获得10
13秒前
q792309106发布了新的文献求助10
14秒前
tong完成签到,获得积分10
14秒前
没有骨头的熊猫完成签到 ,获得积分10
15秒前
15秒前
邝边边发布了新的文献求助30
15秒前
Stonyyy发布了新的文献求助10
16秒前
16秒前
YY发布了新的文献求助10
16秒前
Jasper应助HarryWando采纳,获得10
16秒前
16秒前
SciGPT应助高兴绿柳采纳,获得10
17秒前
科研儿啊发布了新的文献求助10
17秒前
lzb完成签到,获得积分10
17秒前
17秒前
18秒前
香蕉觅云应助sk夏冰采纳,获得10
18秒前
18秒前
斯文败类应助粉色小妖精采纳,获得20
18秒前
kmario完成签到,获得积分10
20秒前
Lucas应助123采纳,获得10
20秒前
ding应助寒月如雪采纳,获得10
20秒前
Ava应助科研蠢狗采纳,获得10
20秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153026
求助须知:如何正确求助?哪些是违规求助? 2804161
关于积分的说明 7857753
捐赠科研通 2461956
什么是DOI,文献DOI怎么找? 1310610
科研通“疑难数据库(出版商)”最低求助积分说明 629314
版权声明 601794