Artificial intelligence and regional anesthesiology education curriculum development: navigating the digital noise

课程 医学 背景(考古学) 多样性(控制论) 麻醉学 软件部署 最佳实践 工程伦理学 知识管理 计算机科学 人工智能 心理学 工程类 教育学 病理 古生物学 管理 经济 生物 操作系统
作者
Kristopher M. Schroeder,Nabil Elkassabany
出处
期刊:Regional Anesthesia and Pain Medicine [BMJ]
卷期号:: rapm-105522 被引量:1
标识
DOI:10.1136/rapm-2024-105522
摘要

Artificial intelligence (AI) has demonstrated a disruptive ability to enhance and transform clinical medicine. While the dexterous nature of anesthesiology work offers some protections from AI clinical assimilation, this technology will ultimately impact the practice and augment the ability to provide an enhanced level of safe and data-driven care. Whether predicting difficulties with airway management, providing perioperative or critical care risk assessments, clinical-decision enhancement, or image interpretation, the indications for AI technologies will continue to grow and are limited only by our collective imagination on how best to deploy this technology. An essential mission of academia is education, and challenges are frequently encountered when working to develop and implement comprehensive and effectively targeted curriculum appropriate for the diverse set of learners assigned to teaching faculty. Curriculum development in this context frequently requires substantial efforts to identify baseline knowledge, learning needs, content requirement, and education strategies. Large language models offer the promise of targeted and nimble curriculum and content development that can be individualized to a variety of learners at various stages of training. This technology has not yet been widely evaluated in the context of education deployment, but it is imperative that consideration be given to the role of AI in curriculum development and how best to deploy and monitor this technology to ensure optimal implementation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷你的项链完成签到,获得积分10
1秒前
小周周完成签到,获得积分10
1秒前
害羞沅发布了新的文献求助10
1秒前
2秒前
123456发布了新的文献求助10
2秒前
NexusExplorer应助兴奋的胡桃采纳,获得10
2秒前
都是发布了新的文献求助10
3秒前
123给123的求助进行了留言
4秒前
4秒前
omega发布了新的文献求助100
5秒前
FashionBoy应助竹蜻蜓采纳,获得10
5秒前
6秒前
白告完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
7秒前
林翔翔完成签到,获得积分10
7秒前
chen发布了新的文献求助10
8秒前
圆圆圆完成签到 ,获得积分10
8秒前
大模型应助迷你的项链采纳,获得10
8秒前
不不完成签到,获得积分10
8秒前
老实大米发布了新的文献求助20
8秒前
林翔翔发布了新的文献求助10
10秒前
aa完成签到,获得积分10
11秒前
11秒前
实习送电工完成签到,获得积分20
11秒前
shinysparrow应助ABCDE采纳,获得210
11秒前
高大zj发布了新的文献求助10
11秒前
静香完成签到,获得积分10
12秒前
wang完成签到,获得积分10
12秒前
科研通AI2S应助阳光怀亦采纳,获得10
13秒前
14秒前
suhei完成签到,获得积分10
14秒前
dada完成签到 ,获得积分10
14秒前
chen完成签到,获得积分10
16秒前
16秒前
gilderf发布了新的文献求助10
17秒前
18秒前
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305352
求助须知:如何正确求助?哪些是违规求助? 2939136
关于积分的说明 8491898
捐赠科研通 2613589
什么是DOI,文献DOI怎么找? 1427527
科研通“疑难数据库(出版商)”最低求助积分说明 663054
邀请新用户注册赠送积分活动 647784