Optimal electric vehicle charging and discharging scheduling using metaheuristic algorithms: V2G approach for cost reduction and grid support

计算机科学 粒子群优化 智能电网 元启发式 电动汽车 车辆到电网 调度(生产过程) 网格 能源管理 算法 工程类 能量(信号处理) 电气工程 运营管理 功率(物理) 物理 几何学 数学 量子力学 统计
作者
Husam I. Shaheen,Ghamgeen Izat Rashed,Bo Yang,Jun Yang
出处
期刊:Journal of energy storage [Elsevier]
卷期号:90: 111816-111816 被引量:11
标识
DOI:10.1016/j.est.2024.111816
摘要

The adoption of Electric Vehicles (EVs) in the transportation sector is expected to grow significantly in the coming few years. While EVs offer numerous benefits, including being environmentally friendly, energy-efficient, low-noise, and can intelligently interact with smart grids through Vehicle-to-Grid (V2G) technology, their widespread adoption will increase energy demand and present challenges to grid load management. Furthermore, EV users face issues such as charging costs, charging time, access to public charging infrastructure, and more. In this article, we propose an approach utilizing metaheuristic algorithms to schedule the charging and discharging activities of EVs while parking, leveraging V2G technology with the goal of reducing the daily costs of EV users and addressing energy demand management challenges in smart grids. Four metaheuristic algorithms inspired by evolutionary and swarm concepts are applied, including Differential Evolution (DE), Particle Swarm Optimization (PSO), Whale Optimization Algorithm (WOA), and Grey Wolf Optimizer (GWO). The results obtained from the proposed approach demonstrate the feasibility of scheduling EVs charging and discharging activities to minimize EV user costs through V2G integration. This, in turn, contributes to enhancing the overall EV user experience and addressing energy demand management issues. Additionally, the results show that WOA outperformed the other algorithms in terms of convergence. This work can be further developed to create an integrated algorithm to balance the interests of both EV users and parking facility operators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助郎治宇采纳,获得10
刚刚
Vintagecat关注了科研通微信公众号
刚刚
积极慕梅应助CG2021采纳,获得20
刚刚
刚刚
ssx发布了新的文献求助10
1秒前
大气沛槐完成签到,获得积分10
2秒前
瑞瑞发布了新的文献求助10
2秒前
英俊的铭应助810采纳,获得10
3秒前
4秒前
个性的紫菜应助lsy采纳,获得20
4秒前
丸子发布了新的文献求助10
4秒前
5秒前
111完成签到,获得积分10
5秒前
yueyan完成签到,获得积分10
6秒前
打打应助失眠傥采纳,获得10
6秒前
6秒前
6秒前
小二郎应助CTX采纳,获得10
6秒前
zzz完成签到 ,获得积分10
7秒前
7秒前
lynn关注了科研通微信公众号
7秒前
8秒前
dadadada完成签到,获得积分10
8秒前
cyy1226发布了新的文献求助10
10秒前
10秒前
王嘎嘎发布了新的文献求助10
11秒前
11秒前
xxx完成签到,获得积分10
11秒前
郎治宇发布了新的文献求助10
12秒前
13秒前
14秒前
14秒前
晶格畸变完成签到,获得积分10
16秒前
SciGPT应助王美贤采纳,获得10
17秒前
17秒前
痴痴的噜完成签到,获得积分10
17秒前
华仔应助mimimi采纳,获得10
17秒前
希望天下0贩的0应助武理采纳,获得10
18秒前
18秒前
19秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160420
求助须知:如何正确求助?哪些是违规求助? 2811548
关于积分的说明 7892779
捐赠科研通 2470529
什么是DOI,文献DOI怎么找? 1315616
科研通“疑难数据库(出版商)”最低求助积分说明 630884
版权声明 602042