Optimal electric vehicle charging and discharging scheduling using metaheuristic algorithms: V2G approach for cost reduction and grid support

计算机科学 粒子群优化 智能电网 元启发式 电动汽车 车辆到电网 调度(生产过程) 网格 能源管理 算法 工程类 能量(信号处理) 电气工程 运营管理 功率(物理) 物理 几何学 数学 量子力学 统计
作者
Husam I. Shaheen,Ghamgeen Izat Rashed,Bo Yang,Jun Yang
出处
期刊:Journal of energy storage [Elsevier BV]
卷期号:90: 111816-111816 被引量:11
标识
DOI:10.1016/j.est.2024.111816
摘要

The adoption of Electric Vehicles (EVs) in the transportation sector is expected to grow significantly in the coming few years. While EVs offer numerous benefits, including being environmentally friendly, energy-efficient, low-noise, and can intelligently interact with smart grids through Vehicle-to-Grid (V2G) technology, their widespread adoption will increase energy demand and present challenges to grid load management. Furthermore, EV users face issues such as charging costs, charging time, access to public charging infrastructure, and more. In this article, we propose an approach utilizing metaheuristic algorithms to schedule the charging and discharging activities of EVs while parking, leveraging V2G technology with the goal of reducing the daily costs of EV users and addressing energy demand management challenges in smart grids. Four metaheuristic algorithms inspired by evolutionary and swarm concepts are applied, including Differential Evolution (DE), Particle Swarm Optimization (PSO), Whale Optimization Algorithm (WOA), and Grey Wolf Optimizer (GWO). The results obtained from the proposed approach demonstrate the feasibility of scheduling EVs charging and discharging activities to minimize EV user costs through V2G integration. This, in turn, contributes to enhancing the overall EV user experience and addressing energy demand management issues. Additionally, the results show that WOA outperformed the other algorithms in terms of convergence. This work can be further developed to create an integrated algorithm to balance the interests of both EV users and parking facility operators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助1111111111111采纳,获得10
1秒前
1秒前
华仔应助dovis采纳,获得10
2秒前
称心的高丽完成签到,获得积分20
2秒前
2秒前
shinn发布了新的文献求助10
3秒前
研友_8op5gL发布了新的文献求助10
5秒前
干净问筠发布了新的文献求助10
5秒前
文泽完成签到,获得积分10
7秒前
lulu完成签到,获得积分10
8秒前
Owen应助budingman采纳,获得20
8秒前
8秒前
9秒前
9秒前
Orange应助shinn采纳,获得10
11秒前
极品男大发布了新的文献求助10
12秒前
Jasper应助飘逸的寄柔采纳,获得10
12秒前
chengxue发布了新的文献求助10
14秒前
王洋完成签到,获得积分10
15秒前
15秒前
Bryan应助赵鑫采纳,获得10
15秒前
无问西东完成签到,获得积分0
17秒前
18秒前
顺心凡之完成签到,获得积分10
19秒前
柯一一应助科研通管家采纳,获得10
21秒前
李爱国应助科研通管家采纳,获得10
21秒前
田様应助科研通管家采纳,获得10
21秒前
英姑应助科研通管家采纳,获得10
21秒前
SciGPT应助科研通管家采纳,获得10
21秒前
21秒前
慕青应助科研通管家采纳,获得10
21秒前
Akim应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
丘比特应助科研通管家采纳,获得10
22秒前
22秒前
汉堡包应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
情怀应助科研通管家采纳,获得10
22秒前
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967654
求助须知:如何正确求助?哪些是违规求助? 3512812
关于积分的说明 11165110
捐赠科研通 3247884
什么是DOI,文献DOI怎么找? 1794027
邀请新用户注册赠送积分活动 874808
科研通“疑难数据库(出版商)”最低求助积分说明 804528