Optimal electric vehicle charging and discharging scheduling using metaheuristic algorithms: V2G approach for cost reduction and grid support

计算机科学 粒子群优化 智能电网 元启发式 电动汽车 车辆到电网 调度(生产过程) 网格 能源管理 算法 工程类 能量(信号处理) 电气工程 运营管理 数学 量子力学 统计 物理 功率(物理) 几何学
作者
Husam I. Shaheen,Ghamgeen Izat Rashed,Bo Yang,Jun Yang
出处
期刊:Journal of energy storage [Elsevier]
卷期号:90: 111816-111816 被引量:59
标识
DOI:10.1016/j.est.2024.111816
摘要

The adoption of Electric Vehicles (EVs) in the transportation sector is expected to grow significantly in the coming few years. While EVs offer numerous benefits, including being environmentally friendly, energy-efficient, low-noise, and can intelligently interact with smart grids through Vehicle-to-Grid (V2G) technology, their widespread adoption will increase energy demand and present challenges to grid load management. Furthermore, EV users face issues such as charging costs, charging time, access to public charging infrastructure, and more. In this article, we propose an approach utilizing metaheuristic algorithms to schedule the charging and discharging activities of EVs while parking, leveraging V2G technology with the goal of reducing the daily costs of EV users and addressing energy demand management challenges in smart grids. Four metaheuristic algorithms inspired by evolutionary and swarm concepts are applied, including Differential Evolution (DE), Particle Swarm Optimization (PSO), Whale Optimization Algorithm (WOA), and Grey Wolf Optimizer (GWO). The results obtained from the proposed approach demonstrate the feasibility of scheduling EVs charging and discharging activities to minimize EV user costs through V2G integration. This, in turn, contributes to enhancing the overall EV user experience and addressing energy demand management issues. Additionally, the results show that WOA outperformed the other algorithms in terms of convergence. This work can be further developed to create an integrated algorithm to balance the interests of both EV users and parking facility operators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助未来科研大佬采纳,获得10
刚刚
解羽完成签到,获得积分10
刚刚
ekko完成签到,获得积分20
1秒前
1秒前
aloong完成签到,获得积分20
1秒前
2秒前
2秒前
2秒前
汉堡包应助qaqfdmmj采纳,获得10
3秒前
zzzllove完成签到,获得积分10
3秒前
3秒前
可耐的宛丝完成签到,获得积分10
3秒前
幸未晚发布了新的文献求助10
4秒前
5秒前
无极微光应助照相机采纳,获得20
5秒前
5秒前
香蕉诗蕊应助解羽采纳,获得10
5秒前
5秒前
6秒前
nini应助麦麦欧巴采纳,获得10
6秒前
6秒前
6秒前
NexusExplorer应助吕喜梅采纳,获得10
6秒前
6秒前
陈杰完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
大宁完成签到,获得积分10
7秒前
aloong发布了新的文献求助10
7秒前
7秒前
打外星人和僵尸完成签到,获得积分10
8秒前
研友_VZG7GZ应助轻松盼雁采纳,获得10
8秒前
柯莱发布了新的文献求助10
8秒前
子予关注了科研通微信公众号
8秒前
8秒前
8秒前
清爽代芹完成签到,获得积分10
8秒前
9秒前
imkhun1021发布了新的文献求助10
9秒前
11M发布了新的文献求助10
10秒前
夏夏夏完成签到,获得积分10
10秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615047
求助须知:如何正确求助?哪些是违规求助? 4699915
关于积分的说明 14905878
捐赠科研通 4740995
什么是DOI,文献DOI怎么找? 2547893
邀请新用户注册赠送积分活动 1511680
关于科研通互助平台的介绍 1473726