Physics-Inspired Multimodal Feature Fusion Cascaded Networks for Data-Driven Magnetic Core Loss Modeling

可解释性 特征(语言学) 人工智能 卷积神经网络 人工神经网络 深度学习 计算机科学 循环神经网络 机器学习 物理 哲学 语言学
作者
Youkang Hu,Jing Xu,Jiyao Wang,Wei Xu
出处
期刊:IEEE Transactions on Power Electronics [Institute of Electrical and Electronics Engineers]
卷期号:39 (9): 11356-11367
标识
DOI:10.1109/tpel.2024.3403708
摘要

This article proposes a physics-inspired multimodal feature fusion cascaded network (PI-MFF-CN) for data-driven magnetic core loss modeling based on MagNet database. The proposed methodology consists of two cascaded sub-models: the physics-inspired network model and the multimodal feature fusion network model. Firstly, a network model inspired by physics and related micromagnetism, is developed based on the Landau-Lifshitz-Gilbert (LLG) equation. It provides new sequence information (HLLG (t)) for the next cascaded core loss prediction model. This addresses the limitation where H(t) waveforms are unable to participate in the actual prediction process. With embedded physical micromagenetic parameters (A, K, Ms) in the gradient learning process of the neural network, the trained physics-inspired network can be regarded as the inverse model (B(t)→HLLG(t)) of LLG Equation having physical interpretability. Then, in order to address a series of challenges in multimodal information learning, a multimodal feature fusion-based network model is proposed. This approach combines the advantages of convolutional neural network (CNN) and fully connected neural network (FCNN) to learn hybrid sequence-scale data. Specifically, it employs parallel CNN branches for sequence feature mappings, followed by concatenating these mappings with other scalar data into an FCNN for global learning. To validate the effectiveness of the proposed method, this article trains and optimizes the proposed models based on MagNet database, and then a series of experiments including extensive material validation (Ferroxcube-3C90, 3C94 & TDK-N27, N30, N49, N87, etc.) were carried out. A series of experimental outcomes demonstrate that the proposed PI-MFF-CN-based method is generalized and robust in accurately predicting magnetic core losses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优秀灵萱完成签到,获得积分10
1秒前
rxaaa完成签到,获得积分10
2秒前
科研通AI2S应助一杯茶采纳,获得30
3秒前
安全123发布了新的文献求助10
4秒前
Junyi完成签到 ,获得积分10
4秒前
7秒前
桐桐应助科研小牛牛采纳,获得10
11秒前
12秒前
向7看齐发布了新的文献求助10
12秒前
大问西完成签到,获得积分20
13秒前
木皆发布了新的文献求助10
14秒前
15秒前
从容连虎完成签到,获得积分10
17秒前
大个应助纯爱战神采纳,获得10
17秒前
关尔完成签到,获得积分10
17秒前
桐桐应助vexille采纳,获得10
17秒前
彭于晏应助勤奋以蓝采纳,获得10
18秒前
大问西发布了新的文献求助10
18秒前
坚定的学姐完成签到,获得积分10
19秒前
大模型应助薛定谔的猫采纳,获得10
19秒前
丿夜幕灬降临丨完成签到,获得积分10
23秒前
25秒前
rinki完成签到,获得积分10
26秒前
27秒前
yun完成签到 ,获得积分10
28秒前
30秒前
SciGPT应助葛利斯581G采纳,获得10
30秒前
服部平次发布了新的文献求助10
30秒前
一匹野马完成签到,获得积分10
31秒前
31秒前
夏侯嘉完成签到,获得积分10
32秒前
隐形曼青应助nk采纳,获得10
34秒前
勤奋以蓝发布了新的文献求助10
34秒前
小小罗发布了新的文献求助10
34秒前
Plank完成签到,获得积分10
36秒前
36秒前
39秒前
烂漫的紫槐完成签到,获得积分10
40秒前
Pumpkin发布了新的文献求助10
42秒前
抹茶冰淇淋完成签到 ,获得积分10
42秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171230
求助须知:如何正确求助?哪些是违规求助? 2822135
关于积分的说明 7938200
捐赠科研通 2482633
什么是DOI,文献DOI怎么找? 1322678
科研通“疑难数据库(出版商)”最低求助积分说明 633676
版权声明 602627