Physics-Inspired Multimodal Feature Fusion Cascaded Networks for Data-Driven Magnetic Core Loss Modeling

可解释性 特征(语言学) 人工智能 卷积神经网络 人工神经网络 深度学习 计算机科学 循环神经网络 机器学习 物理 语言学 哲学
作者
Youkang Hu,Jing Xu,Jiyao Wang,Wei Xu
出处
期刊:IEEE Transactions on Power Electronics [Institute of Electrical and Electronics Engineers]
卷期号:39 (9): 11356-11367
标识
DOI:10.1109/tpel.2024.3403708
摘要

This article proposes a physics-inspired multimodal feature fusion cascaded network (PI-MFF-CN) for data-driven magnetic core loss modeling based on MagNet database. The proposed methodology consists of two cascaded sub-models: the physics-inspired network model and the multimodal feature fusion network model. Firstly, a network model inspired by physics and related micromagnetism, is developed based on the Landau-Lifshitz-Gilbert (LLG) equation. It provides new sequence information (HLLG (t)) for the next cascaded core loss prediction model. This addresses the limitation where H(t) waveforms are unable to participate in the actual prediction process. With embedded physical micromagenetic parameters (A, K, Ms) in the gradient learning process of the neural network, the trained physics-inspired network can be regarded as the inverse model (B(t)→HLLG(t)) of LLG Equation having physical interpretability. Then, in order to address a series of challenges in multimodal information learning, a multimodal feature fusion-based network model is proposed. This approach combines the advantages of convolutional neural network (CNN) and fully connected neural network (FCNN) to learn hybrid sequence-scale data. Specifically, it employs parallel CNN branches for sequence feature mappings, followed by concatenating these mappings with other scalar data into an FCNN for global learning. To validate the effectiveness of the proposed method, this article trains and optimizes the proposed models based on MagNet database, and then a series of experiments including extensive material validation (Ferroxcube-3C90, 3C94 & TDK-N27, N30, N49, N87, etc.) were carried out. A series of experimental outcomes demonstrate that the proposed PI-MFF-CN-based method is generalized and robust in accurately predicting magnetic core losses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
量子星尘发布了新的文献求助50
1秒前
Juvenilesy发布了新的文献求助30
2秒前
拂晓发布了新的文献求助10
2秒前
王厚文发布了新的文献求助10
2秒前
3秒前
FashionBoy应助momo采纳,获得10
3秒前
ddd完成签到,获得积分10
3秒前
顺利芸发布了新的文献求助10
4秒前
慕青应助lalla采纳,获得10
5秒前
留胡子的沛蓝完成签到 ,获得积分20
5秒前
搜集达人应助小羊肖恩采纳,获得10
6秒前
qs发布了新的文献求助10
6秒前
micaixing2006发布了新的文献求助10
6秒前
6秒前
思源应助xiaoyu采纳,获得10
7秒前
777777发布了新的文献求助10
8秒前
xdx发布了新的文献求助10
8秒前
温暖寻琴完成签到,获得积分10
10秒前
扶光完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
liu完成签到,获得积分10
11秒前
12秒前
Criminology34应助已秃采纳,获得10
12秒前
12秒前
mjc完成签到,获得积分10
13秒前
杨文杰发布了新的文献求助50
14秒前
Happy发布了新的文献求助10
15秒前
lalla完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助50
15秒前
塔木发布了新的文献求助10
17秒前
17秒前
Lucas应助Yipeng98采纳,获得10
17秒前
王厚文完成签到,获得积分20
18秒前
Lorain完成签到,获得积分10
18秒前
浮游应助顺利芸采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5005617
求助须知:如何正确求助?哪些是违规求助? 4249178
关于积分的说明 13240238
捐赠科研通 4048859
什么是DOI,文献DOI怎么找? 2215065
邀请新用户注册赠送积分活动 1225027
关于科研通互助平台的介绍 1145470