清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Physics-Inspired Multimodal Feature Fusion Cascaded Networks for Data-Driven Magnetic Core Loss Modeling

可解释性 特征(语言学) 人工智能 卷积神经网络 人工神经网络 深度学习 计算机科学 循环神经网络 机器学习 物理 哲学 语言学
作者
Youkang Hu,Jing Xu,Jiyao Wang,wei xu
出处
期刊:IEEE Transactions on Power Electronics [Institute of Electrical and Electronics Engineers]
卷期号:39 (9): 11356-11367 被引量:6
标识
DOI:10.1109/tpel.2024.3403708
摘要

This article proposes a physics-inspired multimodal feature fusion cascaded network (PI-MFF-CN) for data-driven magnetic core loss modeling based on MagNet database. The proposed methodology consists of two cascaded sub-models: the physics-inspired network model and the multimodal feature fusion network model. Firstly, a network model inspired by physics and related micromagnetism, is developed based on the Landau-Lifshitz-Gilbert (LLG) equation. It provides new sequence information (HLLG (t)) for the next cascaded core loss prediction model. This addresses the limitation where H(t) waveforms are unable to participate in the actual prediction process. With embedded physical micromagenetic parameters (A, K, Ms) in the gradient learning process of the neural network, the trained physics-inspired network can be regarded as the inverse model (B(t)→HLLG(t)) of LLG Equation having physical interpretability. Then, in order to address a series of challenges in multimodal information learning, a multimodal feature fusion-based network model is proposed. This approach combines the advantages of convolutional neural network (CNN) and fully connected neural network (FCNN) to learn hybrid sequence-scale data. Specifically, it employs parallel CNN branches for sequence feature mappings, followed by concatenating these mappings with other scalar data into an FCNN for global learning. To validate the effectiveness of the proposed method, this article trains and optimizes the proposed models based on MagNet database, and then a series of experiments including extensive material validation (Ferroxcube-3C90, 3C94 & TDK-N27, N30, N49, N87, etc.) were carried out. A series of experimental outcomes demonstrate that the proposed PI-MFF-CN-based method is generalized and robust in accurately predicting magnetic core losses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
时老完成签到 ,获得积分10
24秒前
闲人颦儿完成签到,获得积分10
33秒前
45秒前
46秒前
1分钟前
1分钟前
笔墨纸砚完成签到 ,获得积分10
2分钟前
阿洁完成签到,获得积分10
2分钟前
阿洁发布了新的文献求助10
2分钟前
复杂白凡应助阿洁采纳,获得10
2分钟前
菠萝包完成签到 ,获得积分10
2分钟前
2分钟前
科研通AI6应助Maomaojiangjiang采纳,获得10
3分钟前
3分钟前
KINGAZX完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
打打应助科研通管家采纳,获得10
3分钟前
3分钟前
充电宝应助哭泣的芷蝶采纳,获得10
3分钟前
江南之南完成签到 ,获得积分10
3分钟前
4分钟前
chichenglin完成签到 ,获得积分0
4分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
斯文听寒完成签到 ,获得积分10
5分钟前
6分钟前
HS完成签到,获得积分10
6分钟前
MLR发布了新的文献求助10
6分钟前
6分钟前
vitamin完成签到 ,获得积分10
6分钟前
6分钟前
thginK9z完成签到,获得积分10
7分钟前
mzhang2完成签到 ,获得积分10
7分钟前
科研通AI2S应助科研通管家采纳,获得30
7分钟前
打打应助hamliton采纳,获得10
7分钟前
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5529358
求助须知:如何正确求助?哪些是违规求助? 4618481
关于积分的说明 14562694
捐赠科研通 4557545
什么是DOI,文献DOI怎么找? 2497604
邀请新用户注册赠送积分活动 1477776
关于科研通互助平台的介绍 1449269