已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Physics-Inspired Multimodal Feature Fusion Cascaded Networks for Data-Driven Magnetic Core Loss Modeling

可解释性 特征(语言学) 人工智能 卷积神经网络 人工神经网络 深度学习 计算机科学 循环神经网络 机器学习 物理 哲学 语言学
作者
Youkang Hu,Jing Xu,Jiyao Wang,Wei Xu
出处
期刊:IEEE Transactions on Power Electronics [Institute of Electrical and Electronics Engineers]
卷期号:39 (9): 11356-11367
标识
DOI:10.1109/tpel.2024.3403708
摘要

This article proposes a physics-inspired multimodal feature fusion cascaded network (PI-MFF-CN) for data-driven magnetic core loss modeling based on MagNet database. The proposed methodology consists of two cascaded sub-models: the physics-inspired network model and the multimodal feature fusion network model. Firstly, a network model inspired by physics and related micromagnetism, is developed based on the Landau-Lifshitz-Gilbert (LLG) equation. It provides new sequence information (HLLG (t)) for the next cascaded core loss prediction model. This addresses the limitation where H(t) waveforms are unable to participate in the actual prediction process. With embedded physical micromagenetic parameters (A, K, Ms) in the gradient learning process of the neural network, the trained physics-inspired network can be regarded as the inverse model (B(t)→HLLG(t)) of LLG Equation having physical interpretability. Then, in order to address a series of challenges in multimodal information learning, a multimodal feature fusion-based network model is proposed. This approach combines the advantages of convolutional neural network (CNN) and fully connected neural network (FCNN) to learn hybrid sequence-scale data. Specifically, it employs parallel CNN branches for sequence feature mappings, followed by concatenating these mappings with other scalar data into an FCNN for global learning. To validate the effectiveness of the proposed method, this article trains and optimizes the proposed models based on MagNet database, and then a series of experiments including extensive material validation (Ferroxcube-3C90, 3C94 & TDK-N27, N30, N49, N87, etc.) were carried out. A series of experimental outcomes demonstrate that the proposed PI-MFF-CN-based method is generalized and robust in accurately predicting magnetic core losses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
情怀应助科研通管家采纳,获得10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
今后应助从容的香露采纳,获得10
6秒前
JamesPei应助大鱼采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
Yesyes应助科研通管家采纳,获得10
6秒前
英姑应助科研通管家采纳,获得10
6秒前
Jgogo发布了新的文献求助10
6秒前
bkagyin应助科研通管家采纳,获得10
6秒前
6秒前
在水一方应助从容的路灯采纳,获得10
6秒前
Ricky发布了新的文献求助10
7秒前
怕黑面包完成签到 ,获得积分10
8秒前
科研通AI2S应助舒服的美女采纳,获得10
9秒前
潇洒的盼望完成签到 ,获得积分10
11秒前
沧海一声笑完成签到,获得积分10
14秒前
NexusExplorer应助温暖白容采纳,获得10
15秒前
活泼稀完成签到,获得积分10
15秒前
Lucas应助卡塔赫纳采纳,获得10
16秒前
GGBAO发布了新的文献求助10
17秒前
niuma完成签到 ,获得积分10
18秒前
小马甲应助活泼稀采纳,获得10
20秒前
20秒前
25秒前
背后海亦发布了新的文献求助10
27秒前
AIT发布了新的文献求助10
28秒前
28秒前
28秒前
tinglei711发布了新的文献求助10
29秒前
朴实的秋完成签到,获得积分10
30秒前
31秒前
31秒前
32秒前
apple发布了新的文献求助10
34秒前
尊敬秋双完成签到 ,获得积分10
35秒前
英姑应助笨笨善若采纳,获得10
35秒前
温暖白容发布了新的文献求助10
35秒前
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968009
求助须知:如何正确求助?哪些是违规求助? 3513050
关于积分的说明 11166132
捐赠科研通 3248187
什么是DOI,文献DOI怎么找? 1794124
邀请新用户注册赠送积分活动 874880
科研通“疑难数据库(出版商)”最低求助积分说明 804610