可解释性
计算机科学
生成模型
地震反演
数据集
人工智能
数据建模
生成语法
机器学习
模式识别(心理学)
数据挖掘
数学
几何学
数据库
方位角
作者
Chao Meng,Junfeng Gao,Yajun Tian,Hegang Chen,Ruikun Luo
标识
DOI:10.3997/2214-4609.202410861
摘要
Summary The availability of seismic data has specific implications for inversion and interpretation methods, especially for learning-based methods such as deep learning. Forward modeling or acquisition of field data are common means of obtaining seismic data, which can be costly, time-consuming and labor-intensive. This paper provides a generative modeling method for generating seismic data. We use a score-based generative model to learn the distribution of target seismic data set. Specifically, we learn the gradient of the target data set distribution through score matching using the noise conditional score network (NCSN). Then, we sample high-quality samples similar to the target data set through Langevin dynamics with learned NCSN. We take the seismic records synthesized by Marmousi as an example to show the powerful generative modeling capabilities of the generative model. By sampling from a prior distribution (Gaussian distribution), the generative model can generate diverse samples and have good interpretability. For example, by interpolating two random data points from the prior distribution, the generated data has manifold continuity in certain features (such as amplitude, inclination, polarity, number of events, etc.).
科研通智能强力驱动
Strongly Powered by AbleSci AI