The clinical and imaging data fusion model for single-period cerebral CTA collateral circulation assessment

人工智能 计算机科学 特征(语言学) 随机森林 侧支循环 机器学习 医学影像学 抵押品 人口 降维 模式识别(心理学) 医学 放射科 哲学 财务 语言学 环境卫生 经济
作者
Yuqi Ma,Jingliu He,Duo Tan,Xu Han,Ruiqi Feng,Hailing Xiong,Xihua Peng,Xun Pu,Lin Zhang,Yongmei Li,Shanxiong Chen
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:32 (4): 953-971
标识
DOI:10.3233/xst-240083
摘要

BACKGROUND: The Chinese population ranks among the highest globally in terms of stroke prevalence. In the clinical diagnostic process, radiologists utilize computed tomography angiography (CTA) images for diagnosis, enabling a precise assessment of collateral circulation in the brains of stroke patients. Recent studies frequently combine imaging and machine learning methods to develop computer-aided diagnostic algorithms. However, in studies concerning collateral circulation assessment, the extracted imaging features are primarily composed of manually designed statistical features, which exhibit significant limitations in their representational capacity. Accurately assessing collateral circulation using image features in brain CTA images still presents challenges. METHODS: To tackle this issue, considering the scarcity of publicly accessible medical datasets, we combined clinical data with imaging data to establish a dataset named RadiomicsClinicCTA. Moreover, we devised two collateral circulation assessment models to exploit the synergistic potential of patients’ clinical information and imaging data for a more accurate assessment of collateral circulation: data-level fusion and feature-level fusion. To remove redundant features from the dataset, we employed Levene’s test and T-test methods for feature pre-screening. Subsequently, we performed feature dimensionality reduction using the LASSO and random forest algorithms and trained classification models with various machine learning algorithms on the data-level fusion dataset after feature engineering. RESULTS: Experimental results on the RadiomicsClinicCTA dataset demonstrate that the optimized data-level fusion model achieves an accuracy and AUC value exceeding 86%. Subsequently, we trained and assessed the performance of the feature-level fusion classification model. The results indicate the feature-level fusion classification model outperforms the optimized data-level fusion model. Comparative experiments show that the fused dataset better differentiates between good and bad side branch features relative to the pure radiomics dataset. CONCLUSIONS: Our study underscores the efficacy of integrating clinical and imaging data through fusion models, significantly enhancing the accuracy of collateral circulation assessment in stroke patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
bkagyin应助年年年年采纳,获得10
2秒前
liu完成签到,获得积分10
2秒前
brk发布了新的文献求助10
3秒前
沁晨完成签到,获得积分10
3秒前
小曾科研顺利完成签到 ,获得积分10
4秒前
4秒前
ay完成签到,获得积分10
5秒前
6秒前
海棠完成签到 ,获得积分10
6秒前
liu发布了新的文献求助10
6秒前
Nicky_N发布了新的文献求助30
7秒前
开心的吐司完成签到,获得积分10
7秒前
DJ_Tokyo完成签到,获得积分0
7秒前
彭于晏应助张婷采纳,获得10
8秒前
8秒前
科研通AI6应助杨佳楠采纳,获得10
9秒前
周乘风发布了新的文献求助10
9秒前
brk完成签到,获得积分10
10秒前
下雨了完成签到,获得积分10
11秒前
11秒前
英俊的铭应助Emma采纳,获得10
11秒前
Hello应助Yuanyuan采纳,获得10
12秒前
Duomo完成签到 ,获得积分10
13秒前
留胡子的火完成签到,获得积分10
13秒前
黄俊完成签到,获得积分10
14秒前
壮壮发布了新的文献求助10
14秒前
DMMM完成签到,获得积分10
14秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
科研小白董完成签到 ,获得积分10
15秒前
科研通AI2S应助谢先生采纳,获得10
15秒前
lalala发布了新的文献求助10
15秒前
慧慧34完成签到 ,获得积分10
15秒前
16秒前
你好完成签到,获得积分20
17秒前
tttttt发布了新的文献求助10
17秒前
17秒前
17秒前
周乘风完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5524661
求助须知:如何正确求助?哪些是违规求助? 4615154
关于积分的说明 14546595
捐赠科研通 4553141
什么是DOI,文献DOI怎么找? 2495163
邀请新用户注册赠送积分活动 1475760
关于科研通互助平台的介绍 1447541