The clinical and imaging data fusion model for single-period cerebral CTA collateral circulation assessment

人工智能 计算机科学 特征(语言学) 随机森林 侧支循环 机器学习 医学影像学 抵押品 人口 降维 模式识别(心理学) 医学 放射科 哲学 财务 语言学 环境卫生 经济
作者
Yuqi Ma,Jingliu He,Duo Tan,Xu Han,Ruiqi Feng,Hailing Xiong,Xihua Peng,Xun Pu,Lin Zhang,Yongmei Li,Shanxiong Chen
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:32 (4): 953-971
标识
DOI:10.3233/xst-240083
摘要

BACKGROUND: The Chinese population ranks among the highest globally in terms of stroke prevalence. In the clinical diagnostic process, radiologists utilize computed tomography angiography (CTA) images for diagnosis, enabling a precise assessment of collateral circulation in the brains of stroke patients. Recent studies frequently combine imaging and machine learning methods to develop computer-aided diagnostic algorithms. However, in studies concerning collateral circulation assessment, the extracted imaging features are primarily composed of manually designed statistical features, which exhibit significant limitations in their representational capacity. Accurately assessing collateral circulation using image features in brain CTA images still presents challenges. METHODS: To tackle this issue, considering the scarcity of publicly accessible medical datasets, we combined clinical data with imaging data to establish a dataset named RadiomicsClinicCTA. Moreover, we devised two collateral circulation assessment models to exploit the synergistic potential of patients’ clinical information and imaging data for a more accurate assessment of collateral circulation: data-level fusion and feature-level fusion. To remove redundant features from the dataset, we employed Levene’s test and T-test methods for feature pre-screening. Subsequently, we performed feature dimensionality reduction using the LASSO and random forest algorithms and trained classification models with various machine learning algorithms on the data-level fusion dataset after feature engineering. RESULTS: Experimental results on the RadiomicsClinicCTA dataset demonstrate that the optimized data-level fusion model achieves an accuracy and AUC value exceeding 86%. Subsequently, we trained and assessed the performance of the feature-level fusion classification model. The results indicate the feature-level fusion classification model outperforms the optimized data-level fusion model. Comparative experiments show that the fused dataset better differentiates between good and bad side branch features relative to the pure radiomics dataset. CONCLUSIONS: Our study underscores the efficacy of integrating clinical and imaging data through fusion models, significantly enhancing the accuracy of collateral circulation assessment in stroke patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
滴滴滴完成签到 ,获得积分10
刚刚
852应助Slby采纳,获得10
刚刚
1秒前
李健的小迷弟应助wangzhiqin采纳,获得10
2秒前
3秒前
chenchen发布了新的文献求助10
3秒前
殷勤的岱周完成签到,获得积分10
3秒前
叭叭叭发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
陈焕燃发布了新的文献求助10
5秒前
慕青应助xiaoqi采纳,获得10
6秒前
7秒前
FANGQUAN完成签到,获得积分10
8秒前
8秒前
10秒前
11完成签到 ,获得积分10
10秒前
10秒前
yangl完成签到 ,获得积分10
10秒前
墨痕发布了新的文献求助30
11秒前
11秒前
12秒前
12秒前
ding应助hull采纳,获得30
12秒前
12秒前
稳重的泽洋完成签到,获得积分10
13秒前
14秒前
FANGQUAN发布了新的文献求助10
14秒前
14秒前
15秒前
可爱千兰发布了新的文献求助10
15秒前
15秒前
隐形星空完成签到,获得积分10
17秒前
cc321发布了新的文献求助10
17秒前
17秒前
蜗牛123发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
18秒前
利利发布了新的文献求助10
18秒前
支凌瑶发布了新的文献求助10
20秒前
20秒前
彭于晏应助wanz采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5548412
求助须知:如何正确求助?哪些是违规求助? 4633745
关于积分的说明 14632589
捐赠科研通 4575424
什么是DOI,文献DOI怎么找? 2508974
邀请新用户注册赠送积分活动 1485169
关于科研通互助平台的介绍 1456179