The clinical and imaging data fusion model for single-period cerebral CTA collateral circulation assessment

人工智能 计算机科学 特征(语言学) 随机森林 侧支循环 机器学习 医学影像学 抵押品 人口 降维 模式识别(心理学) 医学 放射科 哲学 财务 语言学 环境卫生 经济
作者
Yuqi Ma,Jingliu He,Duo Tan,Xu Han,Ruiqi Feng,Hailing Xiong,Xihua Peng,Xun Pu,Lin Zhang,Yongmei Li,Shanxiong Chen
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:32 (4): 953-971
标识
DOI:10.3233/xst-240083
摘要

BACKGROUND: The Chinese population ranks among the highest globally in terms of stroke prevalence. In the clinical diagnostic process, radiologists utilize computed tomography angiography (CTA) images for diagnosis, enabling a precise assessment of collateral circulation in the brains of stroke patients. Recent studies frequently combine imaging and machine learning methods to develop computer-aided diagnostic algorithms. However, in studies concerning collateral circulation assessment, the extracted imaging features are primarily composed of manually designed statistical features, which exhibit significant limitations in their representational capacity. Accurately assessing collateral circulation using image features in brain CTA images still presents challenges. METHODS: To tackle this issue, considering the scarcity of publicly accessible medical datasets, we combined clinical data with imaging data to establish a dataset named RadiomicsClinicCTA. Moreover, we devised two collateral circulation assessment models to exploit the synergistic potential of patients’ clinical information and imaging data for a more accurate assessment of collateral circulation: data-level fusion and feature-level fusion. To remove redundant features from the dataset, we employed Levene’s test and T-test methods for feature pre-screening. Subsequently, we performed feature dimensionality reduction using the LASSO and random forest algorithms and trained classification models with various machine learning algorithms on the data-level fusion dataset after feature engineering. RESULTS: Experimental results on the RadiomicsClinicCTA dataset demonstrate that the optimized data-level fusion model achieves an accuracy and AUC value exceeding 86%. Subsequently, we trained and assessed the performance of the feature-level fusion classification model. The results indicate the feature-level fusion classification model outperforms the optimized data-level fusion model. Comparative experiments show that the fused dataset better differentiates between good and bad side branch features relative to the pure radiomics dataset. CONCLUSIONS: Our study underscores the efficacy of integrating clinical and imaging data through fusion models, significantly enhancing the accuracy of collateral circulation assessment in stroke patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张大星完成签到 ,获得积分10
1秒前
秦屿发布了新的文献求助10
4秒前
ziwei完成签到 ,获得积分10
4秒前
Orange应助123asd采纳,获得10
5秒前
星辰大海应助123asd采纳,获得10
5秒前
5秒前
5秒前
Tohka完成签到 ,获得积分10
6秒前
科研通AI6应助dzh采纳,获得10
6秒前
一颗松应助马雪滢采纳,获得10
6秒前
6秒前
123别认出我完成签到,获得积分10
7秒前
义气的断秋完成签到,获得积分10
8秒前
8秒前
Red完成签到,获得积分10
9秒前
夏xx完成签到 ,获得积分10
10秒前
小一完成签到,获得积分10
10秒前
livo发布了新的文献求助10
10秒前
emeqwq发布了新的文献求助10
11秒前
Red发布了新的文献求助10
13秒前
Syun完成签到,获得积分10
14秒前
美丽的冰枫完成签到,获得积分10
15秒前
16秒前
科研通AI5应助归尘采纳,获得10
17秒前
emeqwq完成签到,获得积分10
17秒前
yy不是m完成签到,获得积分10
17秒前
无花果应助找找采纳,获得10
17秒前
124完成签到,获得积分10
18秒前
19秒前
Fe_001完成签到 ,获得积分10
20秒前
清脆以旋发布了新的文献求助10
20秒前
阔达白凡完成签到,获得积分10
20秒前
科研通AI6应助秦屿采纳,获得10
21秒前
刘玉凡发布了新的文献求助10
21秒前
livo完成签到,获得积分10
23秒前
Zjjj0812完成签到 ,获得积分10
24秒前
ghroth完成签到,获得积分10
25秒前
八嘎发布了新的文献求助10
25秒前
26秒前
Owen应助唠叨的冥王星采纳,获得10
33秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5130554
求助须知:如何正确求助?哪些是违规求助? 4332648
关于积分的说明 13498156
捐赠科研通 4169169
什么是DOI,文献DOI怎么找? 2285499
邀请新用户注册赠送积分活动 1286489
关于科研通互助平台的介绍 1227430