The clinical and imaging data fusion model for single-period cerebral CTA collateral circulation assessment

人工智能 计算机科学 特征(语言学) 随机森林 侧支循环 机器学习 医学影像学 抵押品 人口 降维 模式识别(心理学) 医学 放射科 哲学 财务 语言学 环境卫生 经济
作者
Yuqi Ma,Jingliu He,Duo Tan,Xu Han,Ruiqi Feng,Hailing Xiong,Xihua Peng,Xun Pu,Lin Zhang,Yongmei Li,Shanxiong Chen
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:32 (4): 953-971
标识
DOI:10.3233/xst-240083
摘要

BACKGROUND: The Chinese population ranks among the highest globally in terms of stroke prevalence. In the clinical diagnostic process, radiologists utilize computed tomography angiography (CTA) images for diagnosis, enabling a precise assessment of collateral circulation in the brains of stroke patients. Recent studies frequently combine imaging and machine learning methods to develop computer-aided diagnostic algorithms. However, in studies concerning collateral circulation assessment, the extracted imaging features are primarily composed of manually designed statistical features, which exhibit significant limitations in their representational capacity. Accurately assessing collateral circulation using image features in brain CTA images still presents challenges. METHODS: To tackle this issue, considering the scarcity of publicly accessible medical datasets, we combined clinical data with imaging data to establish a dataset named RadiomicsClinicCTA. Moreover, we devised two collateral circulation assessment models to exploit the synergistic potential of patients’ clinical information and imaging data for a more accurate assessment of collateral circulation: data-level fusion and feature-level fusion. To remove redundant features from the dataset, we employed Levene’s test and T-test methods for feature pre-screening. Subsequently, we performed feature dimensionality reduction using the LASSO and random forest algorithms and trained classification models with various machine learning algorithms on the data-level fusion dataset after feature engineering. RESULTS: Experimental results on the RadiomicsClinicCTA dataset demonstrate that the optimized data-level fusion model achieves an accuracy and AUC value exceeding 86%. Subsequently, we trained and assessed the performance of the feature-level fusion classification model. The results indicate the feature-level fusion classification model outperforms the optimized data-level fusion model. Comparative experiments show that the fused dataset better differentiates between good and bad side branch features relative to the pure radiomics dataset. CONCLUSIONS: Our study underscores the efficacy of integrating clinical and imaging data through fusion models, significantly enhancing the accuracy of collateral circulation assessment in stroke patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
小玉完成签到,获得积分20
2秒前
树树完成签到,获得积分10
3秒前
yar应助林橙采纳,获得10
3秒前
万能图书馆应助sunshine采纳,获得10
3秒前
4秒前
5秒前
东木应助稳重的秋天采纳,获得20
5秒前
绵绵完成签到,获得积分10
5秒前
5秒前
谨慎鹏涛完成签到 ,获得积分10
6秒前
曹官子完成签到 ,获得积分10
6秒前
7秒前
完美世界应助mzone采纳,获得10
7秒前
桐桐应助欧阳正义采纳,获得10
8秒前
李健应助xxxllllll采纳,获得10
9秒前
小眼儿发布了新的文献求助10
9秒前
10秒前
拔丝香芋发布了新的文献求助10
11秒前
11秒前
安诺完成签到,获得积分10
11秒前
Wangjj发布了新的文献求助10
12秒前
13秒前
FashionBoy应助AlanLi采纳,获得10
13秒前
脑洞疼应助云梦泽采纳,获得10
13秒前
贪玩绮南完成签到,获得积分10
14秒前
武雨寒发布了新的文献求助10
15秒前
franklylyly完成签到,获得积分10
15秒前
sunshine发布了新的文献求助10
15秒前
香蕉觅云应助健忘的梦旋采纳,获得10
16秒前
16秒前
锅子完成签到 ,获得积分10
16秒前
雨中过客完成签到,获得积分10
16秒前
zzzzz完成签到,获得积分10
16秒前
上官若男应助帅气书白采纳,获得10
17秒前
小啦啦3082完成签到 ,获得积分10
17秒前
18秒前
19秒前
20秒前
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966777
求助须知:如何正确求助?哪些是违规求助? 3512284
关于积分的说明 11162496
捐赠科研通 3247199
什么是DOI,文献DOI怎么找? 1793690
邀请新用户注册赠送积分活动 874588
科研通“疑难数据库(出版商)”最低求助积分说明 804432