The clinical and imaging data fusion model for single-period cerebral CTA collateral circulation assessment

人工智能 计算机科学 特征(语言学) 随机森林 侧支循环 机器学习 医学影像学 抵押品 人口 降维 模式识别(心理学) 医学 放射科 哲学 财务 语言学 环境卫生 经济
作者
Yuqi Ma,Jingliu He,Duo Tan,Xu Han,Ruiqi Feng,Hailing Xiong,Xihua Peng,Xun Pu,Lin Zhang,Yongmei Li,Shanxiong Chen
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:32 (4): 953-971
标识
DOI:10.3233/xst-240083
摘要

BACKGROUND: The Chinese population ranks among the highest globally in terms of stroke prevalence. In the clinical diagnostic process, radiologists utilize computed tomography angiography (CTA) images for diagnosis, enabling a precise assessment of collateral circulation in the brains of stroke patients. Recent studies frequently combine imaging and machine learning methods to develop computer-aided diagnostic algorithms. However, in studies concerning collateral circulation assessment, the extracted imaging features are primarily composed of manually designed statistical features, which exhibit significant limitations in their representational capacity. Accurately assessing collateral circulation using image features in brain CTA images still presents challenges. METHODS: To tackle this issue, considering the scarcity of publicly accessible medical datasets, we combined clinical data with imaging data to establish a dataset named RadiomicsClinicCTA. Moreover, we devised two collateral circulation assessment models to exploit the synergistic potential of patients’ clinical information and imaging data for a more accurate assessment of collateral circulation: data-level fusion and feature-level fusion. To remove redundant features from the dataset, we employed Levene’s test and T-test methods for feature pre-screening. Subsequently, we performed feature dimensionality reduction using the LASSO and random forest algorithms and trained classification models with various machine learning algorithms on the data-level fusion dataset after feature engineering. RESULTS: Experimental results on the RadiomicsClinicCTA dataset demonstrate that the optimized data-level fusion model achieves an accuracy and AUC value exceeding 86%. Subsequently, we trained and assessed the performance of the feature-level fusion classification model. The results indicate the feature-level fusion classification model outperforms the optimized data-level fusion model. Comparative experiments show that the fused dataset better differentiates between good and bad side branch features relative to the pure radiomics dataset. CONCLUSIONS: Our study underscores the efficacy of integrating clinical and imaging data through fusion models, significantly enhancing the accuracy of collateral circulation assessment in stroke patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
震动的曲奇完成签到,获得积分10
1秒前
C.Z.Young完成签到,获得积分0
1秒前
2810527600完成签到,获得积分10
3秒前
天天快乐应助qq.com采纳,获得10
6秒前
7秒前
ygx发布了新的文献求助10
8秒前
多多发布了新的文献求助10
11秒前
12秒前
12秒前
香蕉觅云应助llq采纳,获得10
14秒前
Jasper应助坤儿采纳,获得10
15秒前
酷波er应助药大小金鱼采纳,获得10
16秒前
CodeCraft应助多多采纳,获得10
18秒前
Sylvia关注了科研通微信公众号
19秒前
lulu完成签到,获得积分10
19秒前
20秒前
20秒前
chenchen发布了新的文献求助10
21秒前
22秒前
脑洞疼应助鱼2333采纳,获得10
22秒前
领导范儿应助傻自强呀采纳,获得10
24秒前
25秒前
稳稳完成签到,获得积分10
25秒前
瘦瘦的枫叶完成签到 ,获得积分10
25秒前
25秒前
机密塔完成签到,获得积分10
25秒前
llq发布了新的文献求助10
26秒前
30秒前
30秒前
linllll完成签到,获得积分10
30秒前
坤儿发布了新的文献求助10
31秒前
屈绮兰应助疯狂的冬瓜采纳,获得30
32秒前
深情安青应助1123采纳,获得10
33秒前
33秒前
JamesPei应助153采纳,获得10
34秒前
orixero应助清脆跳跳糖采纳,获得10
36秒前
36秒前
傻自强呀发布了新的文献求助10
36秒前
czyzyzy完成签到,获得积分10
38秒前
彭于晏应助OFish采纳,获得10
42秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3352191
求助须知:如何正确求助?哪些是违规求助? 2977475
关于积分的说明 8679676
捐赠科研通 2658452
什么是DOI,文献DOI怎么找? 1455793
科研通“疑难数据库(出版商)”最低求助积分说明 674095
邀请新用户注册赠送积分活动 664651