The clinical and imaging data fusion model for single-period cerebral CTA collateral circulation assessment

人工智能 计算机科学 特征(语言学) 随机森林 侧支循环 机器学习 医学影像学 抵押品 人口 降维 模式识别(心理学) 医学 放射科 哲学 财务 语言学 环境卫生 经济
作者
Yuqi Ma,Jingliu He,Duo Tan,Xu Han,Ruiqi Feng,Hailing Xiong,Xihua Peng,Xun Pu,Lin Zhang,Yongmei Li,Shanxiong Chen
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:32 (4): 953-971
标识
DOI:10.3233/xst-240083
摘要

BACKGROUND: The Chinese population ranks among the highest globally in terms of stroke prevalence. In the clinical diagnostic process, radiologists utilize computed tomography angiography (CTA) images for diagnosis, enabling a precise assessment of collateral circulation in the brains of stroke patients. Recent studies frequently combine imaging and machine learning methods to develop computer-aided diagnostic algorithms. However, in studies concerning collateral circulation assessment, the extracted imaging features are primarily composed of manually designed statistical features, which exhibit significant limitations in their representational capacity. Accurately assessing collateral circulation using image features in brain CTA images still presents challenges. METHODS: To tackle this issue, considering the scarcity of publicly accessible medical datasets, we combined clinical data with imaging data to establish a dataset named RadiomicsClinicCTA. Moreover, we devised two collateral circulation assessment models to exploit the synergistic potential of patients’ clinical information and imaging data for a more accurate assessment of collateral circulation: data-level fusion and feature-level fusion. To remove redundant features from the dataset, we employed Levene’s test and T-test methods for feature pre-screening. Subsequently, we performed feature dimensionality reduction using the LASSO and random forest algorithms and trained classification models with various machine learning algorithms on the data-level fusion dataset after feature engineering. RESULTS: Experimental results on the RadiomicsClinicCTA dataset demonstrate that the optimized data-level fusion model achieves an accuracy and AUC value exceeding 86%. Subsequently, we trained and assessed the performance of the feature-level fusion classification model. The results indicate the feature-level fusion classification model outperforms the optimized data-level fusion model. Comparative experiments show that the fused dataset better differentiates between good and bad side branch features relative to the pure radiomics dataset. CONCLUSIONS: Our study underscores the efficacy of integrating clinical and imaging data through fusion models, significantly enhancing the accuracy of collateral circulation assessment in stroke patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
从容的子轩完成签到,获得积分10
刚刚
科目三应助羊羊羊采纳,获得10
刚刚
加油发布了新的文献求助10
1秒前
铁柱完成签到,获得积分10
2秒前
2秒前
清新的问枫完成签到,获得积分10
2秒前
英吉利25发布了新的文献求助10
2秒前
隐形曼青应助隐形的星月采纳,获得10
2秒前
叶子完成签到,获得积分10
2秒前
龙辉完成签到,获得积分10
2秒前
不失觉得你完成签到,获得积分10
3秒前
prince8891发布了新的文献求助10
3秒前
西柚完成签到 ,获得积分10
3秒前
好好完成签到,获得积分10
3秒前
3秒前
cure发布了新的文献求助30
4秒前
4秒前
黄倩倩完成签到,获得积分10
5秒前
舒心谷雪完成签到 ,获得积分10
5秒前
whuyyz完成签到,获得积分10
5秒前
骑士完成签到,获得积分10
5秒前
6秒前
6秒前
云为晓发布了新的文献求助10
6秒前
1111完成签到,获得积分10
6秒前
6秒前
lifeng完成签到 ,获得积分10
6秒前
小马甲应助Xue采纳,获得10
7秒前
7秒前
A1len完成签到,获得积分10
7秒前
哈哈哈哈哈哈完成签到,获得积分10
7秒前
T_Y发布了新的文献求助10
8秒前
8秒前
圆你心安完成签到,获得积分10
8秒前
lililili完成签到,获得积分10
8秒前
thesky完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
ppp完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5395898
求助须知:如何正确求助?哪些是违规求助? 4516372
关于积分的说明 14059288
捐赠科研通 4428272
什么是DOI,文献DOI怎么找? 2432028
邀请新用户注册赠送积分活动 1424218
关于科研通互助平台的介绍 1403436