A systematic literature review of deep learning-based text summarization: Techniques, input representation, training strategies, mechanisms, datasets, evaluation, and challenges

自动汇总 计算机科学 代表(政治) 人工智能 机器学习 情报检索 自然语言处理 政治 政治学 法学
作者
Marwa E. Saleh,Yaser M. Wazery,Abdelmgeid A. Ali
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:252: 124153-124153
标识
DOI:10.1016/j.eswa.2024.124153
摘要

Automatic Text Summarization (ATS) involves estimating the salience of information and creating coherent summaries that include all relevant and important information from the original text. Extensive research has been carried out on ATS since 1958, gradually evolving from simple to advanced techniques, including machine learning-based, neural network-based, and deep learning-based techniques. Progress has been made in both extractive and abstractive methods throughout this development. Despite numerous surveys on ATS, there remains a notable absence of a comprehensive literature review encompassing the latest advancements in deep learning techniques for text summarization. Therefore, this paper provides a Systematic Literature Review (SLR) of deep learning-based text summarization in both types (extractive and abstractive) between 2014 and 2023. To the best of our knowledge, this is the first SLR that offers a comprehensive overview of extractive and abstractive text summarization techniques based on Deep Learning models. According to the defined inclusion and exclusion criteria, 73 deep learning-based text summarization studies are selected for further investigation. The structure of the review is organized as follows. Firstly, it identifies and examines the deep learning models employed in both extractive and abstractive text summarization. Then, the input text's representation methods are identified and discussed clearly. Next, training strategies used in supervised extractive summarization techniques are identified. Furthermore, mechanisms that improve the abstractive summarization process are identified. Additionally, the most commonly used datasets and their advantages and disadvantages are discussed. The most commonly used evaluation metrics are also identified. Finally, the challenges and possible solutions to guide future research in the field are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助无语的从云采纳,获得10
刚刚
1秒前
zrs完成签到,获得积分10
4秒前
萧水白应助拉长的语雪采纳,获得10
4秒前
萧水白应助拉长的语雪采纳,获得10
4秒前
我在发布了新的文献求助10
5秒前
6秒前
6秒前
汤汤完成签到,获得积分10
6秒前
xiaofenzi发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
hoo完成签到 ,获得积分10
8秒前
8秒前
9秒前
魔幻安南完成签到 ,获得积分10
11秒前
zj发布了新的文献求助10
11秒前
jason04124发布了新的文献求助10
13秒前
gx20发布了新的文献求助10
13秒前
丁三问发布了新的文献求助10
13秒前
一口一个粽子完成签到 ,获得积分10
13秒前
14秒前
15秒前
思源应助QQQ采纳,获得10
17秒前
18秒前
黑苹果完成签到,获得积分10
18秒前
19秒前
小熊riki完成签到,获得积分10
20秒前
能干的凡蕾完成签到,获得积分10
21秒前
彭于晏应助我在采纳,获得10
22秒前
贤惠的大侠完成签到,获得积分10
23秒前
秋雨完成签到,获得积分10
24秒前
26秒前
哭泣的海莲完成签到,获得积分10
26秒前
27秒前
灵巧沛文完成签到,获得积分10
27秒前
adazbq完成签到 ,获得积分10
27秒前
jagger完成签到,获得积分10
28秒前
小二郎应助秋雨采纳,获得10
28秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 400
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3292356
求助须知:如何正确求助?哪些是违规求助? 2928650
关于积分的说明 8438119
捐赠科研通 2600747
什么是DOI,文献DOI怎么找? 1419262
科研通“疑难数据库(出版商)”最低求助积分说明 660268
邀请新用户注册赠送积分活动 642921