已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Bayes_Opt-SWMM: A Gaussian process-based Bayesian optimization tool for real-time flood modeling with SWMM

替代模型 雨水管理模型 马尔科夫蒙特卡洛 计算机科学 数学优化 贝叶斯推理 大洪水 高斯过程 不确定度量化 贝叶斯优化 贝叶斯定理 贝叶斯概率 高斯分布 机器学习 人工智能 数学 雨水 地表径流 物理 量子力学 生态学 哲学 神学 生物
作者
Ahad Hasan Tanim,Corinne Smith-Lewis,Austin Downey,Jasim Imran,Erfan Goharian
出处
期刊:Environmental Modelling and Software [Elsevier BV]
卷期号:179: 106122-106122 被引量:1
标识
DOI:10.1016/j.envsoft.2024.106122
摘要

Real-time flood model plays a pivotal role in averting urban flood damage, particularly when there is minimal lead time for preparatory measures. However, urban flood modeling in real-time often contends with inherent uncertainties arising from input data uncertainty and parameter ambiguities. This study introduces a real-time calibration (RTC) tool called Bayes_Opt-SWMM , specifically tailored for real-time urban flood modeling and uncertainty optimization. This tool leverages the Gaussian process-based Bayesian optimization algorithm and interfaces seamlessly with the Stormwater Management Model (SWMM). It integrates real-time model forcing data and flood monitoring collected through sensors and gauges which are strategically placed within critical locations of urban drainage systems. Our approach hinges on the Surrogate Model based Uncertainty Optimization (SMUO) concept, providing an avenue for enhancing real-time flood modeling. Bayes_Opt-SWMM runs the optimization process using a surrogate model called Gaussian Process emulator with two inference methods: (1) the Gaussian Process (GP) model and (2) Markov Chain Monte Carlo (MCMC) algorithm in GP model (GP_MCMC). Furthermore, three acquisition functions, namely Expected Improvement (EI), Maximum Probability of Improvement (MPI), and Lower Confidence Bound (LCB), facilitate optimal parameter fitting within the surrogate models. The efficiency of GP-based surrogate models in learning SWMM model parameters, leads to an improved uncertainty quantification and accelerated real-time flood modeling in urban areas. Overall, Bayes_Opt-SWMM emerges as a cost-effective and valuable tool for real-time flood modeling and monitoring, with significant potential for managing intelligent storm water systems in urban environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助活力青筠采纳,获得10
6秒前
9秒前
JamesPei应助烂漫的煎饼采纳,获得10
9秒前
9秒前
小猪完成签到 ,获得积分10
12秒前
大大怪发布了新的文献求助10
13秒前
136542发布了新的文献求助30
13秒前
14秒前
情怀应助俏皮的白柏采纳,获得10
15秒前
酷波er应助Blue_Wolf采纳,获得10
15秒前
JJ发布了新的文献求助10
17秒前
烟花应助科研通管家采纳,获得10
18秒前
爆米花应助科研通管家采纳,获得10
18秒前
Rondab应助科研通管家采纳,获得10
18秒前
Rondab应助科研通管家采纳,获得10
18秒前
丘比特应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
在水一方应助烂漫的煎饼采纳,获得10
19秒前
FashionBoy应助科研通管家采纳,获得10
19秒前
19秒前
酷波er应助科研通管家采纳,获得10
19秒前
Liufgui应助旭007采纳,获得10
20秒前
21秒前
Jiangzhibing发布了新的文献求助10
23秒前
黄庆勇完成签到,获得积分10
24秒前
25秒前
CF发布了新的文献求助10
26秒前
27秒前
孙燕应助Arui采纳,获得10
27秒前
涛1118发布了新的文献求助10
31秒前
31秒前
Jason完成签到,获得积分10
32秒前
33秒前
yar应助JJ采纳,获得30
34秒前
NexusExplorer应助烂漫的煎饼采纳,获得10
40秒前
完美世界应助dyce采纳,获得10
41秒前
听闻韬声依旧完成签到 ,获得积分10
41秒前
43秒前
会飞的猪发布了新的文献求助10
44秒前
xxn完成签到 ,获得积分10
45秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989811
求助须知:如何正确求助?哪些是违规求助? 3531927
关于积分的说明 11255560
捐赠科研通 3270706
什么是DOI,文献DOI怎么找? 1805035
邀请新用户注册赠送积分活动 882181
科研通“疑难数据库(出版商)”最低求助积分说明 809190