Bayes_Opt-SWMM: A Gaussian process-based Bayesian optimization tool for real-time flood modeling with SWMM

替代模型 雨水管理模型 马尔科夫蒙特卡洛 计算机科学 数学优化 贝叶斯推理 大洪水 高斯过程 不确定度量化 贝叶斯优化 贝叶斯定理 贝叶斯概率 高斯分布 机器学习 人工智能 数学 雨水 地表径流 物理 量子力学 生态学 哲学 神学 生物
作者
Ahad Hasan Tanim,Corinne Smith-Lewis,Austin Downey,Jasim Imran,Erfan Goharian
出处
期刊:Environmental Modelling and Software [Elsevier BV]
卷期号:179: 106122-106122 被引量:1
标识
DOI:10.1016/j.envsoft.2024.106122
摘要

Real-time flood model plays a pivotal role in averting urban flood damage, particularly when there is minimal lead time for preparatory measures. However, urban flood modeling in real-time often contends with inherent uncertainties arising from input data uncertainty and parameter ambiguities. This study introduces a real-time calibration (RTC) tool called Bayes_Opt-SWMM , specifically tailored for real-time urban flood modeling and uncertainty optimization. This tool leverages the Gaussian process-based Bayesian optimization algorithm and interfaces seamlessly with the Stormwater Management Model (SWMM). It integrates real-time model forcing data and flood monitoring collected through sensors and gauges which are strategically placed within critical locations of urban drainage systems. Our approach hinges on the Surrogate Model based Uncertainty Optimization (SMUO) concept, providing an avenue for enhancing real-time flood modeling. Bayes_Opt-SWMM runs the optimization process using a surrogate model called Gaussian Process emulator with two inference methods: (1) the Gaussian Process (GP) model and (2) Markov Chain Monte Carlo (MCMC) algorithm in GP model (GP_MCMC). Furthermore, three acquisition functions, namely Expected Improvement (EI), Maximum Probability of Improvement (MPI), and Lower Confidence Bound (LCB), facilitate optimal parameter fitting within the surrogate models. The efficiency of GP-based surrogate models in learning SWMM model parameters, leads to an improved uncertainty quantification and accelerated real-time flood modeling in urban areas. Overall, Bayes_Opt-SWMM emerges as a cost-effective and valuable tool for real-time flood modeling and monitoring, with significant potential for managing intelligent storm water systems in urban environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
cugwzr完成签到,获得积分10
2秒前
123发布了新的文献求助10
3秒前
唯博完成签到 ,获得积分10
4秒前
muzi发布了新的文献求助10
5秒前
8秒前
8秒前
忧郁盼夏发布了新的文献求助10
8秒前
Xianhe完成签到,获得积分10
9秒前
HUU完成签到,获得积分10
11秒前
14秒前
忧郁盼夏完成签到,获得积分10
14秒前
14秒前
搜集达人应助su采纳,获得10
16秒前
丘比特应助gwenjing采纳,获得10
16秒前
哈哈哈完成签到,获得积分10
18秒前
18秒前
冷艳的姿发布了新的文献求助10
18秒前
dpp完成签到,获得积分10
19秒前
周周完成签到,获得积分10
21秒前
22秒前
22秒前
哈哈哈发布了新的文献求助30
22秒前
123发布了新的文献求助10
23秒前
25秒前
Stardust发布了新的文献求助10
25秒前
momo发布了新的文献求助10
26秒前
28秒前
笑笑完成签到,获得积分20
30秒前
stephenzh完成签到,获得积分10
30秒前
su发布了新的文献求助10
32秒前
笑笑发布了新的文献求助10
33秒前
李健的粉丝团团长应助momo采纳,获得10
34秒前
情怀应助LJJ采纳,获得10
36秒前
40秒前
41秒前
41秒前
43秒前
阿里巴巴大盗完成签到,获得积分10
44秒前
zying发布了新的文献求助30
44秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989334
求助须知:如何正确求助?哪些是违规求助? 3531428
关于积分的说明 11253936
捐赠科研通 3270119
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173