Amyloid Detection in Neurodegenerative Diseases through MOFs

神经科学 淀粉样蛋白(真菌学) 神经退行性变 蛋白质聚集 淀粉样β 淀粉样纤维 医学 疾病 生物 病理 生物化学
作者
Ketan Maru,Amarendra Singh,Ritambhara Jangir,Komal Kumar Jangir
出处
期刊:Journal of Materials Chemistry B [The Royal Society of Chemistry]
卷期号:12 (19): 4553-4573 被引量:4
标识
DOI:10.1039/d4tb00373j
摘要

Neurodegenerative diseases (amyloid diseases such as Alzheimer's and Parkinson's), stemming from protein misfolding and aggregation, encompass a spectrum of disorders with severe systemic implications. Timely detection is pivotal in managing these diseases owing to their significant impact on organ function and high mortality rates. The diverse array of amyloid disorders, spanning localized and systemic manifestations, underscores the complexity of these conditions and highlights the need for advanced detection methods. Traditional approaches have focused on identifying biomarkers using imaging techniques (PET and MRI) or invasive procedures. However, recent efforts have focused on the use of metal-organic frameworks (MOFs), a versatile class of materials known for their unique properties, in revolutionizing amyloid disease detection. The high porosity, customizable structures, and biocompatibility of MOFs enable their integration with biomolecules, laying the groundwork for highly sensitive and specific biosensors. These sensors have been employed using electrochemical and photophysical techniques that target amyloid species under neurodegenerative conditions. The adaptability of MOFs allows for the precise detection and quantification of amyloid proteins, offering potential advancements in early diagnosis and disease management. This review article delves into how MOFs contribute to detecting amyloid diseases by categorizing their uses based on different sensing methods, such as electrochemical (EC), electrochemiluminescence (ECL), fluorescence, Förster resonance energy transfer (FRET), up-conversion luminescence resonance energy transfer (ULRET), and photoelectrochemical (PEC) sensing. The drawbacks of MOF biosensors and the challenges encountered in the field are also briefly explored from our perspective.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助史健采纳,获得10
1秒前
巴拿马吃鱼完成签到 ,获得积分10
4秒前
4秒前
5秒前
李w发布了新的文献求助10
5秒前
5秒前
李梦琦发布了新的文献求助10
7秒前
7秒前
精明尔曼发布了新的文献求助10
7秒前
8秒前
许中原完成签到,获得积分10
8秒前
传奇3应助花生豆采纳,获得10
8秒前
Hello应助白方明采纳,获得10
8秒前
坛子发布了新的文献求助10
9秒前
10秒前
kingwill应助普通的查查采纳,获得20
10秒前
Hello应助Yangjueming采纳,获得10
10秒前
你不刷牙完成签到,获得积分10
12秒前
12秒前
科研通AI5应助七七采纳,获得30
12秒前
12秒前
史健发布了新的文献求助10
13秒前
凤梨发布了新的文献求助10
13秒前
13秒前
七慕凉应助QhL采纳,获得10
13秒前
15秒前
可乐应助认真银耳汤采纳,获得10
15秒前
科研废物发布了新的文献求助10
16秒前
赘婿应助白方明采纳,获得10
16秒前
ssssbbbb完成签到,获得积分10
17秒前
ASD完成签到,获得积分10
17秒前
迦佭完成签到,获得积分10
18秒前
yazhi发布了新的文献求助10
18秒前
18秒前
hhy完成签到,获得积分10
18秒前
科研通AI2S应助李梦琦采纳,获得10
18秒前
anya完成签到,获得积分20
19秒前
19秒前
阿良发布了新的文献求助10
20秒前
20秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483356
求助须知:如何正确求助?哪些是违规求助? 3072736
关于积分的说明 9127609
捐赠科研通 2764309
什么是DOI,文献DOI怎么找? 1517091
邀请新用户注册赠送积分活动 701898
科研通“疑难数据库(出版商)”最低求助积分说明 700770