Computer aided diagnosis of diabetic retinopathy based on multi-view joint learning

计算机科学 人工智能 计算机辅助诊断 糖尿病性视网膜病变 眼底(子宫) 特征提取 特征(语言学) 模式识别(心理学) 接收机工作特性 自适应直方图均衡化 直方图 图像(数学) 计算机视觉 直方图均衡化 医学 机器学习 放射科 糖尿病 内分泌学 语言学 哲学
作者
Xuebin Xu,Dehua Liu,Guohua Huang,Muyu Wang,Meng Lei,Yang Jia
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:174: 108428-108428 被引量:1
标识
DOI:10.1016/j.compbiomed.2024.108428
摘要

Diabetic retinopathy (DR) is a kind of ocular complication of diabetes, and its degree grade is an essential basis for early diagnosis of patients. Manual diagnosis is a long and expensive process with a specific risk of misdiagnosis. Computer-aided diagnosis can provide more accurate and practical treatment recommendations. In this paper, we propose a multi-view joint learning DR diagnostic model called RT2Net, which integrates the global features of fundus images and the local detailed features of vascular images to reduce the limitations of single fundus image learning. Firstly, the original image is preprocessed using operations such as contrast-limited adaptive histogram equalization, and the vascular structure of the extracted DR image is segmented. Then, the vascular image and fundus image are input into two branch networks of RT2Net for feature extraction, respectively, and the feature fusion module adaptively fuses the feature vectors' output from the branch networks. Finally, the optimized classification model is used to identify the five categories of DR. This paper conducts extensive experiments on the public datasets EyePACS and APTOS 2019 to demonstrate the method's effectiveness. The accuracy of RT2Net on the two datasets reaches 88.2% and 85.4%, and the area under the receiver operating characteristic curve (AUC) is 0.98 and 0.96, respectively. The excellent classification ability of RT2Net for DR can significantly help patients detect and treat lesions early and provide doctors with a more reliable diagnosis basis, which has significant clinical value for diagnosing DR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Anonymous完成签到,获得积分10
刚刚
刚刚
小蘑菇应助自然采纳,获得10
1秒前
伞兵龙完成签到,获得积分10
1秒前
1秒前
西安小小朱完成签到,获得积分10
1秒前
1秒前
2秒前
小二郎应助打工人章鱼哥采纳,获得10
2秒前
优雅的琳发布了新的文献求助10
2秒前
Niar完成签到 ,获得积分10
2秒前
2秒前
3秒前
shuimo521发布了新的文献求助10
3秒前
脑洞疼应助眯眯眼的老鼠采纳,获得10
3秒前
所所应助小离采纳,获得10
3秒前
我是老大应助杨天水采纳,获得10
3秒前
woodheart完成签到,获得积分10
4秒前
4秒前
JamesPei应助miaoww采纳,获得10
4秒前
王王完成签到,获得积分10
4秒前
Evelyn完成签到,获得积分10
4秒前
cxt1346完成签到 ,获得积分10
4秒前
bkagyin应助孙一雯采纳,获得30
5秒前
顺心迎南完成签到,获得积分20
5秒前
Emma完成签到,获得积分10
5秒前
CodeCraft应助微笑鹤采纳,获得11
6秒前
6秒前
天青色等烟雨完成签到 ,获得积分10
6秒前
坚强亦丝应助hziyu采纳,获得10
6秒前
tanhaili完成签到 ,获得积分10
6秒前
乐小佳完成签到,获得积分10
6秒前
yyyrrr完成签到,获得积分10
7秒前
7秒前
7秒前
李健应助hu970采纳,获得10
7秒前
JamesPei应助守护星星采纳,获得10
8秒前
kingwill应助科研小民工采纳,获得20
8秒前
9秒前
小胖子发布了新的文献求助10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672