Computer aided diagnosis of diabetic retinopathy based on multi-view joint learning

计算机科学 人工智能 计算机辅助诊断 糖尿病性视网膜病变 眼底(子宫) 特征提取 特征(语言学) 模式识别(心理学) 接收机工作特性 自适应直方图均衡化 直方图 图像(数学) 计算机视觉 直方图均衡化 医学 机器学习 放射科 糖尿病 哲学 内分泌学 语言学
作者
Xuebin Xu,Dehua Liu,Guohua Huang,Muyu Wang,Meng Lei,Yang Jia
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:174: 108428-108428 被引量:1
标识
DOI:10.1016/j.compbiomed.2024.108428
摘要

Diabetic retinopathy (DR) is a kind of ocular complication of diabetes, and its degree grade is an essential basis for early diagnosis of patients. Manual diagnosis is a long and expensive process with a specific risk of misdiagnosis. Computer-aided diagnosis can provide more accurate and practical treatment recommendations. In this paper, we propose a multi-view joint learning DR diagnostic model called RT2Net, which integrates the global features of fundus images and the local detailed features of vascular images to reduce the limitations of single fundus image learning. Firstly, the original image is preprocessed using operations such as contrast-limited adaptive histogram equalization, and the vascular structure of the extracted DR image is segmented. Then, the vascular image and fundus image are input into two branch networks of RT2Net for feature extraction, respectively, and the feature fusion module adaptively fuses the feature vectors' output from the branch networks. Finally, the optimized classification model is used to identify the five categories of DR. This paper conducts extensive experiments on the public datasets EyePACS and APTOS 2019 to demonstrate the method's effectiveness. The accuracy of RT2Net on the two datasets reaches 88.2% and 85.4%, and the area under the receiver operating characteristic curve (AUC) is 0.98 and 0.96, respectively. The excellent classification ability of RT2Net for DR can significantly help patients detect and treat lesions early and provide doctors with a more reliable diagnosis basis, which has significant clinical value for diagnosing DR.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
子车茗应助科研通管家采纳,获得20
刚刚
刚刚
循环发布了新的文献求助10
刚刚
大模型应助科研通管家采纳,获得10
刚刚
我是老大应助科研通管家采纳,获得10
刚刚
量子星尘发布了新的文献求助10
1秒前
Xcj发布了新的文献求助10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
子车茗应助科研通管家采纳,获得20
1秒前
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
吨吨发布了新的文献求助10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
zzz发布了新的文献求助30
1秒前
慕青应助科研通管家采纳,获得10
1秒前
LewisAcid应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
LewisAcid应助科研通管家采纳,获得10
2秒前
zky发布了新的文献求助10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
wanci应助科研通管家采纳,获得10
2秒前
皇甫成发布了新的文献求助10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
wanci应助科研通管家采纳,获得10
2秒前
小蘑菇应助Onechch采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728317
求助须知:如何正确求助?哪些是违规求助? 5312368
关于积分的说明 15313794
捐赠科研通 4875546
什么是DOI,文献DOI怎么找? 2618882
邀请新用户注册赠送积分活动 1568431
关于科研通互助平台的介绍 1525095