An anti-disturbance lane-changing trajectory tracking control method combining extended Kalman filter and robust tube-based model predictive control

卡尔曼滤波器 控制理论(社会学) 模型预测控制 弹道 跟踪(教育) 扰动(地质) 扩展卡尔曼滤波器 控制(管理) 计算机科学 工程类 人工智能 生物 物理 古生物学 教育学 心理学 天文
作者
F. C. P. Yin,Changyin Dong,Ye Li,Yujia Chen,Hao Wang
出处
期刊:Journal of Intelligent Transportation Systems [Informa]
卷期号:: 1-16 被引量:2
标识
DOI:10.1080/15472450.2024.2315136
摘要

This paper proposes a trajectory tracking control method combining extended Kalman filter (EKF) and robust tube-based model predictive control (RTMPC) methods to improve the anti-disturbance capability during lane-changing maneuver of automated vehicles. A time-based quintic polynomial function is introduced for the implementation of trajectory planning to obtain the desired reference trajectory. The planned trajectory is input to the nominal system-oriented model predictive controller (MPC) in RTMPC for optimization to obtain the optimal control of the nominal system. The EKF collects the state measurements of the current instant and the optimal state estimates of the previous instant, and performs filtering to obtain the optimal state estimates of the current instant. The optimal estimate of the current state and the current state of the nominal system are input into the auxiliary control law of RTMPC to obtain the control of the actual system. Comparative numerical simulation experiments are conducted to analyze robustness and sensitivity of the proposed method. The results show that the control method combining EKF and RTMPC can optimize the trajectory tracking performance of the vehicle system, especially in the lateral displacement and the yaw-rate control. When the amplitude of measurement noise reaches the maximum, the optimization effect of lateral control is most significant in experiments. And the optimization effect in the control of lateral displacement and yaw angle continues to enhance with the increase of measurement disturbance. Therefore, this study can provide a reference for the anti-interference lane change trajectory tracking strategy of automated vehicles in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
华仔应助zoele采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
6秒前
6秒前
ying完成签到,获得积分10
9秒前
9秒前
10秒前
11秒前
香蕉觅云应助阿星捌采纳,获得10
11秒前
落后成仁完成签到,获得积分20
11秒前
11秒前
11秒前
zoele发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
归尘应助麦地娜采纳,获得10
14秒前
寻道图强应助麦地娜采纳,获得30
14秒前
大个应助麦地娜采纳,获得30
14秒前
14秒前
15秒前
15秒前
16秒前
zheng完成签到,获得积分10
16秒前
小张完成签到,获得积分10
17秒前
17秒前
材袅完成签到,获得积分10
18秒前
18秒前
19秒前
乾坤完成签到,获得积分10
21秒前
mengdewen完成签到,获得积分10
21秒前
蒸盐粥发布了新的文献求助10
22秒前
22秒前
tomorrow发布了新的文献求助10
23秒前
23秒前
Ray发布了新的文献求助10
23秒前
24秒前
25秒前
量子星尘发布了新的文献求助10
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729568
求助须知:如何正确求助?哪些是违规求助? 5319394
关于积分的说明 15317016
捐赠科研通 4876593
什么是DOI,文献DOI怎么找? 2619440
邀请新用户注册赠送积分活动 1568984
关于科研通互助平台的介绍 1525535