On‐Demand Bioactivation of Inert Materials With Plasma‐Polymerized Nanoparticles

材料科学 惰性 等离子体聚合 纳米颗粒 聚合 等离子体 纳米技术 化学工程 聚合物 有机化学 复合材料 化学 量子力学 物理 工程类
作者
Miguel Santos,Praveesuda L. Michael,Timothy C. Mitchell,Yuen Ting Lam,Thomas M. Robinson,Mathew J. Moore,Richard P. Tan,Jelena Rnjak‐Kovacina,Khoon S. Lim,Steven G. Wise
出处
期刊:Advanced Materials [Wiley]
被引量:1
标识
DOI:10.1002/adma.202311313
摘要

Abstract Conventional gas plasma treatments are crucial for functionalizing materials in biomedical applications, but have limitations hindering their broader use. These methods require exposure to reactive media under vacuum conditions, rendering them unsuitable for substrates that demand aqueous environments, such as proteins and hydrogels. In addition, complex geometries are difficult to treat, necessitating extensive customization for each material and shape. To address these constraints, an innovative approach employing plasma polymer nanoparticles (PPN) as a versatile functionalization tool is proposed. PPN share similarities with traditional plasma polymer coatings (PPC) but offer unique advantages: compatibility with aqueous systems, the ability to modify complex geometries, and availability as off‐the‐shelf products. Robust immobilization of PPN on various substrates, including synthetic polymers, proteins, and complex hydrogel structures is demonstrated in this study. This results in substantial improvements in surface hydrophilicity. Materials functionalization with arginylglycylaspartic acid (RGD)‐loaded PPN significantly enhances cell attachment, spreading, and substrate coverage on inert scaffolds compared to passive RGD coatings. Improved adhesion to complex geometries and subsequent differentiation following growth factor exposure is also demonstrated. This research introduces a novel substrate functionalization approach that mimics the outcomes of plasma coating technology but vastly expands its applicability, promising advancements in biomedical materials and devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xu完成签到,获得积分20
2秒前
Naveed发布了新的文献求助10
2秒前
yiyiyi完成签到 ,获得积分10
3秒前
fengweimian完成签到 ,获得积分10
4秒前
研友_VZG7GZ应助老登来壶猹采纳,获得10
5秒前
从容青寒完成签到,获得积分10
6秒前
科研通AI5应助不会看文献采纳,获得10
9秒前
才欣宇完成签到 ,获得积分10
16秒前
负责凛完成签到,获得积分10
18秒前
Naveed完成签到,获得积分10
19秒前
21秒前
赘婿应助哔哔鱼采纳,获得10
23秒前
胖头鱼666发布了新的文献求助10
25秒前
28秒前
29秒前
29秒前
大个应助哭泣嵩采纳,获得10
30秒前
长宁舟发布了新的文献求助10
31秒前
渣155136发布了新的文献求助10
32秒前
mailang完成签到,获得积分10
34秒前
35秒前
哔哔鱼完成签到,获得积分10
36秒前
思源应助学霸宇大王采纳,获得10
37秒前
wanci应助mailang采纳,获得10
38秒前
哔哔鱼发布了新的文献求助10
38秒前
happyGUGU完成签到,获得积分10
40秒前
40秒前
碧蓝雁完成签到,获得积分20
40秒前
Joyce完成签到,获得积分10
41秒前
shishi0718完成签到,获得积分10
43秒前
科研通AI5应助渣155136采纳,获得10
43秒前
orixero应助westbobo采纳,获得10
43秒前
43秒前
48秒前
寒雨完成签到,获得积分10
49秒前
mailang发布了新的文献求助10
49秒前
搜集达人应助happyGUGU采纳,获得10
51秒前
黄鱼饼发布了新的文献求助30
51秒前
52秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3670038
求助须知:如何正确求助?哪些是违规求助? 3227414
关于积分的说明 9775447
捐赠科研通 2937677
什么是DOI,文献DOI怎么找? 1609410
邀请新用户注册赠送积分活动 760339
科研通“疑难数据库(出版商)”最低求助积分说明 735792