Identification of the Constitutive and Friction Models Parameters via a Multi-Objective Surrogate-Assisted Algorithm for the Modeling of Machining - Application to ALE orthogonal cutting of Ti6Al4V

机械加工 本构方程 鉴定(生物学) 计算机科学 算法 机械工程 工程类 结构工程 有限元法 植物 生物
作者
François Ducobu,Nithyaraaj Kugalur Palanisamy,Guillaume Briffoteaux,Maxime Gobert,Daniel Tuyttens,Pedro-José Arrazola Arriola,Édouard Rivière-Lorphèvre
出处
期刊:Journal of Manufacturing Science and Engineering-transactions of The Asme [ASME International]
卷期号:: 1-54
标识
DOI:10.1115/1.4065223
摘要

Abstract The evolution of high-performance computing facilitates the simulation of manufacturing processes. The prediction accuracy of a numerical model of the cutting process is closely associated with the selection of constitutive and friction models. The reliability and the accuracy of these models highly depend on the value of the parameters involved in the definition of the cutting process. These model parameters are determined using a direct method or an inverse method. However, these identification procedures often neglect the link between the parameters of the material and the friction models. This paper introduces a novel approach to inversely identify the best parameters value for both models at the same time and by taking into account multiple cutting conditions in the optimization routine. An Artificial Intelligence (AI) framework that combines the finite element modeling with an Adaptive Bayesian Multi-objective Evolutionary Algorithm (AB-MOEA) is developed, where the objective is to minimize the deviation between the experimental and the numerical results. The Arbitrary Lagrangian Eulerian (ALE) formulation and the Ti6Al4V alloy are selected to demonstrate its applicability. The investigation shows that the developed AI platform can identify the best parameters values with low computational time and resources. The identified parameters values predicted the cutting and feed forces within a deviation of less than 4% from the experiments for all the cutting conditions considered in this work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
元炫发布了新的文献求助10
刚刚
刚刚
huang完成签到,获得积分10
刚刚
dan1029发布了新的文献求助10
1秒前
dan1029发布了新的文献求助10
1秒前
研友_VZG7GZ应助reneeyan58采纳,获得10
1秒前
dan1029发布了新的文献求助10
1秒前
深情安青应助欧阳采纳,获得10
1秒前
2秒前
dan1029发布了新的文献求助10
2秒前
3秒前
3秒前
4秒前
黑白应助兴奋中道采纳,获得10
4秒前
刘孝鹏应助兴奋中道采纳,获得10
4秒前
Jasper应助兴奋中道采纳,获得10
4秒前
小马甲应助小小酥被卷了采纳,获得10
4秒前
这么年轻压根睡不着完成签到 ,获得积分10
5秒前
ljy发布了新的文献求助10
5秒前
5秒前
peterlu完成签到,获得积分10
5秒前
JimmyFun发布了新的文献求助10
6秒前
积极热狗发布了新的文献求助10
6秒前
CipherSage应助嘉的科研采纳,获得10
6秒前
6秒前
CipherSage应助无奈的老姆采纳,获得10
6秒前
冷静如柏完成签到,获得积分10
7秒前
杨羊羊完成签到 ,获得积分10
7秒前
元炫完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
cupoi发布了新的文献求助10
9秒前
111完成签到,获得积分10
9秒前
9秒前
天真笑白完成签到,获得积分20
9秒前
xifeng发布了新的文献求助10
9秒前
9秒前
10秒前
Mango完成签到,获得积分10
10秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299089
求助须知:如何正确求助?哪些是违规求助? 2934118
关于积分的说明 8467235
捐赠科研通 2607521
什么是DOI,文献DOI怎么找? 1423776
科研通“疑难数据库(出版商)”最低求助积分说明 661689
邀请新用户注册赠送积分活动 645336