已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Assessing the improvement potentials of climate model partitioning and time-variant feature extraction for soil organic carbon prediction

土壤碳 环境科学 萃取(化学) 土壤科学 特征(语言学) 总有机碳 土壤水分 环境化学 化学 语言学 哲学 色谱法
作者
Yilin Bao,Xiangtian Meng,Huanjun Liu,Xianglei Meng,Mingming Xing,Dan Cao,Jiahua Zhang,Fengmei Yao
出处
期刊:Catena [Elsevier BV]
卷期号:241: 108014-108014 被引量:2
标识
DOI:10.1016/j.catena.2024.108014
摘要

The monitoring of soil organic carbon (SOC) content is of significance for the global carbon cycle and the sustainability of soil quality under climate change. SOC prediction based on multi-source remote sensing data has been integrated well into different local regression strategies and model algorithms. However, the application of mixing local regression strategies with high generalizability and extracting more advanced information from time-variant data are rare. Here, we propose a climate model partitioning strategy, compared to common local regression strategies (soil classification and spectral clustering), with the aim of improving the accuracy of regional SOC content prediction. In this study, 1248 topsoil samples were collected in Northeast China. Environmental covariates representing soil-forming elements of meteorology, organisms, terrain and parent materials factors were explored, and then different time-variant covariate pre-processing were performed, and form Dataset I (conventional mean values of covariates) and Dataset II (shapelet features extracted from covariates) according to the data type. Next, we explored the effectiveness of global regression and local regression strategies (soil classification and five scenarios of Shared Socio-economic Pathways (SSPs)-based ant colony optimization clustering) for SOC prediction with a convolutional neural network (CNN) model. The results demonstrated that the optimal SOC content prediction model with the SSP245 local regression strategy and Dataset II as input yielded the lowest root mean square error (RMSE) of 5.83 g kg−1, the highest coefficient of determination (R2) and a ratio of performance to interquartile distance (RPIQ) of 0.73 and 1.99, respectively. Second, the order of SOC prediction accuracy among the different regression strategies was SSP245 > SSP119 > SSP370 > soil classification > SSP126 > SSP585 > global regression. Third, compared with Dataset I, the CNN model-based Dataset II had a 12 % increase in average R2 values, a 5.27 % decrease in RMSE, and a 4.27 % increase in RPIQ, which indicates that the shapelet feature extraction algorithm could better mine the information of time-variant variables in SOC content assessment. Finally, we identified that CNN could perform better in regions with low spatial heterogeneity. Our results suggest that the paradigm of "local regression + feature extraction" has great potential for SOC prediction and mapping, especially for larger scales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助ESLG采纳,获得10
1秒前
Isaac完成签到 ,获得积分10
1秒前
1秒前
和谐续完成签到 ,获得积分10
1秒前
2秒前
依依发布了新的文献求助10
2秒前
wzh完成签到 ,获得积分10
4秒前
小巧谷波应助冷酷翠桃采纳,获得10
4秒前
深情的迎海完成签到,获得积分10
5秒前
king完成签到 ,获得积分10
8秒前
turtle_medchem完成签到,获得积分10
9秒前
李健的小迷弟应助ESLG采纳,获得10
10秒前
心灵美凝竹完成签到 ,获得积分10
12秒前
学术乞丐感谢好心人完成签到,获得积分10
13秒前
Wilson完成签到 ,获得积分10
13秒前
dada完成签到,获得积分10
14秒前
16秒前
19秒前
领导范儿应助Gideon采纳,获得10
21秒前
和谐的冬莲完成签到 ,获得积分10
21秒前
七七发布了新的文献求助10
22秒前
一见憘完成签到 ,获得积分10
23秒前
小地蛋完成签到 ,获得积分10
23秒前
wuyin发布了新的文献求助10
25秒前
27秒前
小曲完成签到 ,获得积分10
27秒前
小蘑菇应助yeo采纳,获得10
28秒前
fb12000发布了新的文献求助30
31秒前
研友_n0kjPL完成签到,获得积分0
31秒前
31秒前
32秒前
云上人完成签到 ,获得积分10
32秒前
samky发布了新的文献求助10
33秒前
33秒前
33秒前
Lucille完成签到,获得积分10
34秒前
KDS发布了新的文献求助10
35秒前
儒雅的诗兰完成签到,获得积分10
35秒前
清脆大树完成签到,获得积分10
37秒前
Lucille发布了新的文献求助10
38秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956932
求助须知:如何正确求助?哪些是违规求助? 3502968
关于积分的说明 11110867
捐赠科研通 3233954
什么是DOI,文献DOI怎么找? 1787676
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802223