Graphical models for identifying pore‐forming proteins

计算生物学 蛋白质功能预测 计算机科学 成对比较 马尔可夫链 同源建模 蛋白质测序 序列(生物学) 蛋白质结构预测 线程(蛋白质序列) 蛋白质结构 结构相似性 人工智能 条件随机场 回路建模 生物 蛋白质功能 肽序列 机器学习 基因 遗传学 生物化学
作者
Nan Xu,Theodore W. Kahn,Theju Jacob,Yan Liu
出处
期刊:Proteins [Wiley]
卷期号:92 (8): 975-983
标识
DOI:10.1002/prot.26687
摘要

Abstract Pore‐forming toxins (PFTs) are proteins that form lesions in biological membranes. Better understanding of the structure and function of these proteins will be beneficial in a number of biotechnological applications, including the development of new pest control methods in agriculture. When searching for new pore formers, existing sequence homology‐based methods fail to discover truly novel proteins with low sequence identity to known proteins. Search methodologies based on protein structures would help us move beyond this limitation. As the number of known structures for PFTs is very limited, it's quite challenging to identify new proteins having similar structures using computational approaches like deep learning. In this article, we therefore propose a sample‐efficient graphical model, where a protein structure graph is first constructed according to consensus secondary structures. A semi‐Markov conditional random fields model is then developed to perform protein sequence segmentation. We demonstrate that our method is able to distinguish structurally similar proteins even in the absence of sequence similarity (pairwise sequence identity < 0.4)—a feat not achievable by traditional approaches like HMMs. To extract proteins of interest from a genome‐wide protein database for further study, we also develop an efficient framework for UniRef50 with 43 million proteins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助楠12采纳,获得10
刚刚
搞怪从菡发布了新的文献求助10
1秒前
隐形曼青应助FAN采纳,获得30
1秒前
情怀应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
睡觉觉关注了科研通微信公众号
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
千跃应助科研通管家采纳,获得10
3秒前
SYLH应助科研通管家采纳,获得30
4秒前
yookia应助科研通管家采纳,获得40
4秒前
Akim应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
小白应助科研通管家采纳,获得20
4秒前
SYLH应助科研通管家采纳,获得30
4秒前
一点通发布了新的文献求助10
4秒前
4秒前
Akim应助科研通管家采纳,获得30
4秒前
沛沛发布了新的文献求助10
4秒前
5秒前
Possession发布了新的文献求助10
5秒前
诺诺完成签到 ,获得积分10
5秒前
Dding发布了新的文献求助20
5秒前
额我认为完成签到,获得积分10
5秒前
大个应助huijuan采纳,获得10
5秒前
斯文败类应助潇洒飞丹采纳,获得10
7秒前
7秒前
月月发布了新的文献求助10
8秒前
珂珂完成签到,获得积分20
8秒前
marongzhi发布了新的文献求助10
10秒前
王天天完成签到 ,获得积分10
11秒前
丘比特应助steve采纳,获得10
12秒前
温暖的砖家完成签到,获得积分10
12秒前
善学以致用应助珂珂采纳,获得10
12秒前
Gloven完成签到,获得积分20
13秒前
13秒前
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956369
求助须知:如何正确求助?哪些是违规求助? 3502503
关于积分的说明 11108341
捐赠科研通 3233197
什么是DOI,文献DOI怎么找? 1787199
邀请新用户注册赠送积分活动 870528
科研通“疑难数据库(出版商)”最低求助积分说明 802105