清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Perspective on Mechanistic Modeling of Li-Ion Batteries

锂(药物) 降级(电信) 锂离子电池 电池(电) 材料科学 纳米技术 计算机科学 电信 物理 医学 功率(物理) 量子力学 内分泌学
作者
Matthieu Dubarry,David Beck
出处
期刊:Accounts of materials research [American Chemical Society]
卷期号:3 (8): 843-853 被引量:53
标识
DOI:10.1021/accountsmr.2c00082
摘要

ConspectusThough relatively young, the mechanistic modeling approach has gained tremendous traction in the past decade as it was proven to be extremely versatile and effective for lithium-ion battery diagnosis and prognosis. The approach is relies on assembling digital twins by matching the individual voltage response of each electrode. Changing the matching, via scaling or translations, enables replication of the degradation modes electrochemical signature. Degradation modes comprise the loss of lithium inventory, the loss of active material, and kinetic changes and refer to the impact of degradation mechanisms on the electrodes rather than their root cause. Every degradation mechanism will affect, to some extent, the amount of material able to react, the amount of lithium able to go back and forth between the electrodes, and the overall reaction kinetics. Quantifying degradation modes open the gate for material-based diagnosis and prognosis without the need for complex models.This Account is first a reflection on a decade worth of discussion and validation of several key concepts about using digital twins for advanced diagnosis and prognosis since the seminal publications in the early 2010s. Since proposing our version of the framework, it has been used to diagnose the degradation of several hundred cells of multiple chemistries and blends. It made it possible to explain and predict the apparition of knees with the concept of hidden mechanisms and to emulate the impact of kinetics. The approach also proved useful to investigate overdischarge and overcharge and to generate big data with millions of synthetic voltage curves enabling the development of advanced diagnosis and prognosis tools. Herein, we will focus on the emulation of kinetic changes, of lithium plating both from rate-dependent and rate-independent origins, and on the utilization of synthetic datasets.This Account will also introduce the next decade with proof-of-concept implementations and simulations that will open new directions to enhance the modeling framework application to more complex case figures that could facilitate its use for deployed systems. This includes more varied synthetic data sets, blended and inhomogeneous electrodes and packs, voltage fade, and calculations outside of constant current. Blends and voltage fade will be simulated with a new paralleling model at the electrode level, inhomogeneities will be simulated with a new paralleling model at the cell level, and nonconstant duty cycles will be calculated by aggregating simulations at different rates. These new features could allow a much wider field implementation of better diagnosis and prognosis tools for deployed systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xingzai101完成签到,获得积分10
7秒前
14秒前
诺亚方舟哇哈哈完成签到 ,获得积分0
17秒前
23秒前
29秒前
41秒前
42秒前
49秒前
49秒前
天天快乐应助坚定的剑心采纳,获得10
1分钟前
1分钟前
小蘑菇应助科研通管家采纳,获得10
1分钟前
doublenine18发布了新的文献求助50
1分钟前
1分钟前
1分钟前
斯文败类应助顾灵毓采纳,获得10
1分钟前
1分钟前
2分钟前
2分钟前
顾灵毓发布了新的文献求助10
2分钟前
可爱的函函应助顾灵毓采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
顾灵毓发布了新的文献求助10
3分钟前
脑洞疼应助科研通管家采纳,获得10
3分钟前
李健应助顾灵毓采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
顾灵毓发布了新的文献求助10
3分钟前
3分钟前
HJJ完成签到 ,获得积分10
3分钟前
4分钟前
顾灵毓完成签到,获得积分10
4分钟前
tt完成签到,获得积分10
4分钟前
4分钟前
拼搏问薇完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639753
求助须知:如何正确求助?哪些是违规求助? 4750316
关于积分的说明 15007305
捐赠科研通 4797968
什么是DOI,文献DOI怎么找? 2564061
邀请新用户注册赠送积分活动 1522938
关于科研通互助平台的介绍 1482591