ASCL: Adversarial supervised contrastive learning for defense against word substitution attacks

计算机科学 对抗制 稳健性(进化) 深层神经网络 人工智能 边距(机器学习) 机器学习 水准点(测量) 困境 词(群论) 人工神经网络 基因 地理 化学 哲学 认识论 生物化学 语言学 大地测量学
作者
Jiahui Shi,Linjing Li,Daniel Zeng
出处
期刊:Neurocomputing [Elsevier]
卷期号:510: 59-68 被引量:1
标识
DOI:10.1016/j.neucom.2022.09.032
摘要

Attacks with adversarial examples can tremendously worsen the performance of deep neural networks (DNNs). Hence, defending against such adversarial attacks is crucial for nearly all DNN-based applications. Adversarial training is an effective and extensively adopted approach for increasing the robustness of DNNs in which benign examples and their adversarial counterparts are considered together in the training stage. However, this may result in a decrease in accuracy on benign examples because it does not account for the inter-class distance of benign examples. To overcome the aforementioned dilemma, we devise a novel defense approach named adversarial supervised contrastive learning (ASCL), which combines adversarial training with supervised contrastive learning to enhance the robustness of DNN-based models while maintaining their clean accuracy. We validate the effectiveness of the proposed ASCL approach in the scenario of defending against word substitution attacks by means of extensive experiments on benchmark tasks and datasets. The experimental results show that ASCL reduces the attack success rate to 20% while maintaining the accuracy for clean inputs within a 2% margin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助科研通管家采纳,获得10
刚刚
英俊的铭应助科研通管家采纳,获得10
刚刚
SciGPT应助科研通管家采纳,获得10
刚刚
ivy应助科研通管家采纳,获得10
1秒前
pluto应助科研通管家采纳,获得10
1秒前
喵酱完成签到,获得积分10
1秒前
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得30
1秒前
敬老院N号应助科研通管家采纳,获得30
1秒前
Hello应助科研通管家采纳,获得10
1秒前
1秒前
Ava应助科研通管家采纳,获得30
1秒前
淡定的思松应助ww采纳,获得10
1秒前
cxh发布了新的文献求助10
2秒前
2秒前
winstar完成签到,获得积分10
2秒前
Amai发布了新的文献求助20
3秒前
langzi发布了新的文献求助10
3秒前
ZH的天方夜谭完成签到,获得积分20
3秒前
酷波er应助Rrr采纳,获得10
3秒前
Rhodomyrtus关注了科研通微信公众号
3秒前
wei完成签到,获得积分10
4秒前
4秒前
Qinruirui完成签到,获得积分10
4秒前
Owen应助xia采纳,获得10
4秒前
ddy完成签到,获得积分10
5秒前
zmy发布了新的文献求助10
5秒前
鳗鱼厉发布了新的文献求助10
5秒前
孤存完成签到 ,获得积分10
5秒前
zho关闭了zho文献求助
5秒前
6秒前
8秒前
aaashirz_完成签到,获得积分10
8秒前
科研通AI2S应助风中寄云采纳,获得10
8秒前
coffeecup1完成签到,获得积分10
10秒前
萌萌许完成签到,获得积分10
10秒前
10秒前
斯文鸡完成签到,获得积分10
11秒前
萌萌完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794