淋巴管新生
化学
体内
分子生物学
癌症研究
MTT法
活力测定
细胞周期蛋白D1
体外
生物
癌症
细胞
细胞周期
生物化学
转移
生物技术
遗传学
作者
Jianhua Guan,Bin Guan,Hai-Xia Shang,Jun Peng,Hong Yang,Jiumao Lin
标识
DOI:10.1016/j.biopha.2022.113630
摘要
Gastric cancer (GC) is one of the most common gastrointestinal malignancies in the world. Growing evidence emphasizes the critical role of long non-coding RNA (lncRNA) in GC tumorigenesis. The aim of the research was to elucidate the effect and mechanism of Babao Dan (BBD) on lymphangiogenesis of GC in vitro and in vivo via lncRNA-ANRIL/VEGF-C/VEGFR-3 signaling axis. The present study investigated BBD significantly decreased the expression of lncRNA-ANRIL and VEGF-C in GC cells (AGS, BGC823, and MGC80-3) by using real-time quantitative polymerasechain reaction (RT-qPCR) and the secretion and expression of VEGF-C by (enzyme linked immunosorbent assay) ELISA and western blot (WB). BBD significantly inhibited the tumor xenograft of GC growth and the expression of lncRNA-ANRIL, VEGF-C, VEGFR-3 and LYVE-1 in vivo. BBD reduced serum VEGF-C level. In vitro, BBD inhibited the tube formation and decreased the cell viability, proliferation and migration of HLECs by using tube formation, MTT, Hoechst and Transwell assays. In addition, WB assay found that BBD decreased the expression levels of VEGF-C, VEGFR-3, matrix metallopeptidase 2 (MMP-2) and matrix metallopeptidase 9 (MMP-9), and RT-qPCR assay found that the mRNA expression levels of lncRNA-ANRIL, VEGF-C, VEGFR-3, MMP-2, MMP-9, CDK4, Cyclin D1, and Bcl-2 were down-regulated, and the expression of p21 and Bax were increased. Taken together, these results demonstrated that BBD inhibited lymphangiogenesis of GC in vitro and in vivo via the lncRNA-ANRIL/VEGF-C/VEGFR-3 signaling axis.
科研通智能强力驱动
Strongly Powered by AbleSci AI