作者
Zeeshan Abbas,Mobeen Ur Rehman,Hilal Tayara,Quan Zou,Kil To Chong
摘要
5-methylcytosine (m5C) is indeed a critical post-transcriptional alteration that is widely present in various kinds of RNAs and is crucial to the fundamental biological processes. By correctly identifying the m5C-methylation sites on RNA, clinicians can more clearly comprehend the precise function of these m5C-sites in different biological processes. Due to their effectiveness and affordability, computational methods have received greater attention over the last few years for the identification of methylation sites in various species. To precisely identify RNA m5C locations in five different species including Homo sapiens, Arabidopsis thaliana, Mus musculus, Drosophila melanogaster, and Danio rerio, we proposed a more effective and accurate model named m5C-pred. To create m5C-pred, five distinct feature encoding techniques were combined to extract features from the RNA sequence, and then we used SHapley Additive exPlanations to choose the best features among them, followed by XGBoost as a classifier. We applied the novel optimization method called Optuna to quickly and efficiently determine the best hyperparameters. Finally, the proposed model was evaluated using independent test datasets, and we compared the results with the previous methods. Our approach, m5C- pred, is anticipated to be useful for accurately identifying m5C sites, outperforming the currently available state-of-the-art techniques. 5-methylcytosine (m5C) is indeed a critical post-transcriptional alteration that is widely present in various kinds of RNAs and is crucial to the fundamental biological processes. By correctly identifying the m5C-methylation sites on RNA, clinicians can more clearly comprehend the precise function of these m5C-sites in different biological processes. Due to their effectiveness and affordability, computational methods have received greater attention over the last few years for the identification of methylation sites in various species. To precisely identify RNA m5C locations in five different species including Homo sapiens, Arabidopsis thaliana, Mus musculus, Drosophila melanogaster, and Danio rerio, we proposed a more effective and accurate model named m5C-pred. To create m5C-pred, five distinct feature encoding techniques were combined to extract features from the RNA sequence, and then we used SHapley Additive exPlanations to choose the best features among them, followed by XGBoost as a classifier. We applied the novel optimization method called Optuna to quickly and efficiently determine the best hyperparameters. Finally, the proposed model was evaluated using independent test datasets, and we compared the results with the previous methods. Our approach, m5C- pred, is anticipated to be useful for accurately identifying m5C sites, outperforming the currently available state-of-the-art techniques.