XGBoost framework with feature selection for the prediction of RNA N5-methylcytosine sites

特征选择 5-甲基胞嘧啶 选择(遗传算法) 特征(语言学) 计算生物学 核糖核酸 生物 计算机科学 人工智能 遗传学 基因 DNA甲基化 基因表达 语言学 哲学
作者
Zeeshan Abbas,Mobeen Ur Rehman,Hilal Tayara,Quan Zou,Kil To Chong
出处
期刊:Molecular Therapy [Elsevier]
卷期号:31 (8): 2543-2551 被引量:17
标识
DOI:10.1016/j.ymthe.2023.05.016
摘要

5-methylcytosine (m5C) is indeed a critical post-transcriptional alteration that is widely present in various kinds of RNAs and is crucial to the fundamental biological processes. By correctly identifying the m5C-methylation sites on RNA, clinicians can more clearly comprehend the precise function of these m5C-sites in different biological processes. Due to their effectiveness and affordability, computational methods have received greater attention over the last few years for the identification of methylation sites in various species. To precisely identify RNA m5C locations in five different species including Homo sapiens, Arabidopsis thaliana, Mus musculus, Drosophila melanogaster, and Danio rerio, we proposed a more effective and accurate model named m5C-pred. To create m5C-pred, five distinct feature encoding techniques were combined to extract features from the RNA sequence, and then we used SHapley Additive exPlanations to choose the best features among them, followed by XGBoost as a classifier. We applied the novel optimization method called Optuna to quickly and efficiently determine the best hyperparameters. Finally, the proposed model was evaluated using independent test datasets, and we compared the results with the previous methods. Our approach, m5C- pred, is anticipated to be useful for accurately identifying m5C sites, outperforming the currently available state-of-the-art techniques. 5-methylcytosine (m5C) is indeed a critical post-transcriptional alteration that is widely present in various kinds of RNAs and is crucial to the fundamental biological processes. By correctly identifying the m5C-methylation sites on RNA, clinicians can more clearly comprehend the precise function of these m5C-sites in different biological processes. Due to their effectiveness and affordability, computational methods have received greater attention over the last few years for the identification of methylation sites in various species. To precisely identify RNA m5C locations in five different species including Homo sapiens, Arabidopsis thaliana, Mus musculus, Drosophila melanogaster, and Danio rerio, we proposed a more effective and accurate model named m5C-pred. To create m5C-pred, five distinct feature encoding techniques were combined to extract features from the RNA sequence, and then we used SHapley Additive exPlanations to choose the best features among them, followed by XGBoost as a classifier. We applied the novel optimization method called Optuna to quickly and efficiently determine the best hyperparameters. Finally, the proposed model was evaluated using independent test datasets, and we compared the results with the previous methods. Our approach, m5C- pred, is anticipated to be useful for accurately identifying m5C sites, outperforming the currently available state-of-the-art techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
HGalong发布了新的文献求助10
1秒前
cc完成签到,获得积分10
1秒前
3秒前
4秒前
6秒前
寒冷的觅露完成签到,获得积分10
7秒前
醒醒发布了新的文献求助10
7秒前
8秒前
二个虎牙发布了新的文献求助10
8秒前
称心的乘云完成签到,获得积分10
9秒前
10秒前
12秒前
12秒前
快乐滑板发布了新的文献求助10
12秒前
luckysame完成签到,获得积分10
14秒前
在水一方应助欣慰外绣采纳,获得10
14秒前
14秒前
你好CDY发布了新的文献求助10
14秒前
沐颜完成签到 ,获得积分10
14秒前
阿迪发布了新的文献求助10
14秒前
ZHEN发布了新的文献求助10
15秒前
郭佳怡发布了新的文献求助10
15秒前
科研通AI2S应助不安的夜柳采纳,获得10
15秒前
16秒前
16秒前
CLubiy完成签到,获得积分10
16秒前
阿拉阿拉赛关注了科研通微信公众号
17秒前
言堇完成签到,获得积分10
18秒前
18秒前
搜集达人应助科研通管家采纳,获得10
18秒前
大模型应助科研通管家采纳,获得10
18秒前
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
Owen应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
田様应助科研通管家采纳,获得10
18秒前
思源应助科研通管家采纳,获得10
18秒前
19秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140765
求助须知:如何正确求助?哪些是违规求助? 2791647
关于积分的说明 7799859
捐赠科研通 2447961
什么是DOI,文献DOI怎么找? 1302261
科研通“疑难数据库(出版商)”最低求助积分说明 626487
版权声明 601194