A machine learning–based multidimensional model integrating clinical, radiomics, and cell-free DNA methylation biomarkers for the classification of pulmonary nodules.

医学 逻辑回归 无线电技术 金标准(测试) 放射科 肺癌 机器学习 内科学 计算机科学
作者
Wenhua Liang,Bo Wang,Jinsheng Tao,Minhua Peng,Xixiang Tu,Xiangcheng Qiu,Yunjun Yang,Zhujia Ye,Z Chen,Jian‐Bing Fan,Jianxing He
出处
期刊:Journal of Clinical Oncology [American Society of Clinical Oncology]
卷期号:41 (16_suppl): 3070-3070 被引量:1
标识
DOI:10.1200/jco.2023.41.16_suppl.3070
摘要

3070 Background: Patients with pulmonary nodules undergoing excessive invasive procedures is a pressing clinical problem. We sought to develop a noninvasive, machine learning-based multidimensional tool combining clinical, radiomic, and cell-free DNA (cfDNA) methylation biomarkers for improving accuracy of pulmonary nodules classification. Methods: This prospectively collected and retrospective blinded evaluation trial enrolled a total of 1,276 subjects at 24 hospitals in China. All patients with a 5-30 mm pulmonary nodule at high risk of lung cancer had undergone surgical resection with definitive pathological diagnosis. Clinical information, preoperative peripheral blood, and chest CT scans were collected. The regions of interest (ROIs) containing target nodule on the CT images were automatically segmented by a deep-learning based model. 2,153 radiomics features were extracted from ROIs using PyRadiomics. Based on clinical and radiomics features, four classification models were constructed using LightGBM, Lasso, Random Forest, and Logistic Regression algorithms. Subsequently, the predicted probabilities of the above four models were averaged to obtain a final score of the combined clinical and radiomic biomarkers model (CRBM) in a training set (n=797). Then we integrated CRBM model with our previously established cfDNA methylation model (PulmoSeek; DOI: 10.1172/JCI145973) to create a new combined model using logistic regression (n=201), PulmoSeek Plus V2.0, and verified it independently (n =278). The ROC curves were compared to evaluate the diagnostic performance among the CRBM, PulmoSeek, and PulmoSeek Plus V2.0 model, pathologic diagnosis as the gold standard. Results: The CRBM model achieved AUCs of 0.81(95%CI 0.73-0.90) and 0.80 (0.74-0.86) in the two validation sets (n1=201, n2=278), respectively. In the training set (n=201) and validation set (n=278), the PulmoSeek Plus V2.0 obtained AUCs of 0.93 (0.90-0.97) and 0.91 (0.88-0.95), and accuracies of 0.89 (0.84-0.93) and 0.84 (0.79-0.88), respectively. In the combined set (n=479), when compared with CRBM and PulmoSeek, PulmoSeek Plus V2.0 yielded improved AUCs of 11% and 6%, and accuracies of 6% and 3%, respectively. PulmoSeek Plus V2.0 model for rule-out at the fixed specificity of 50%, had an overall sensitivity of 0.98 (0.96-0.99), PPV of 0.86 (0.82-0.89), and NPV of 0.998 (0.988-1.000, at 5% prevalence). It maintains good diagnostic performance in early-stage lung cancer (0-I, n=328) and 5-10 mm nodules (n=92), with sensitivities of 0.98 (0.96-0.99) and 0.98 (0.92-0.99), respectively. Conclusions: PulmoSeek Plus V2.0, as a novel machine learning-based multidimensional model, improves the accuracy of pulmonary nodules classification, and potentially reduces the unnecessary invasive procedures among individuals with benign nodules. Clinical trial information: NCT03181490 , NCT03651986 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到,获得积分10
刚刚
一只蓉馍馍完成签到,获得积分10
1秒前
1秒前
1秒前
marongzhi完成签到 ,获得积分10
1秒前
悬铃木完成签到,获得积分10
1秒前
啦啦啦啦啦完成签到,获得积分10
2秒前
yjj19990124发布了新的文献求助30
2秒前
fiona完成签到,获得积分10
2秒前
清风悠笛完成签到,获得积分10
2秒前
2秒前
罚克由尔完成签到,获得积分10
2秒前
Mr.Reese完成签到,获得积分10
2秒前
归海紫翠发布了新的文献求助30
2秒前
一只小可爱完成签到,获得积分10
3秒前
TAKERA完成签到 ,获得积分10
3秒前
阳光总在风雨后完成签到,获得积分10
4秒前
南山无梅落完成签到 ,获得积分10
4秒前
坚持看完完成签到,获得积分20
4秒前
小海南波万完成签到,获得积分10
4秒前
蔚岚影落完成签到,获得积分10
4秒前
5秒前
guanfan完成签到,获得积分10
5秒前
TAKERA发布了新的文献求助10
6秒前
6秒前
8秒前
Zhidong Wei完成签到,获得积分10
8秒前
段明威发布了新的文献求助10
8秒前
blueskyzhi完成签到,获得积分10
8秒前
解圣洁完成签到 ,获得积分10
9秒前
ceeray23发布了新的文献求助111
9秒前
10秒前
10秒前
爱吃泡芙完成签到,获得积分10
10秒前
tulips发布了新的文献求助10
10秒前
10秒前
11秒前
寂寞的菲鹰完成签到,获得积分10
11秒前
小蘑菇完成签到,获得积分20
11秒前
小白完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3510997
求助须知:如何正确求助?哪些是违规求助? 3093756
关于积分的说明 9218930
捐赠科研通 2788213
什么是DOI,文献DOI怎么找? 1530059
邀请新用户注册赠送积分活动 710736
科研通“疑难数据库(出版商)”最低求助积分说明 706329