Computer-aided shape features extraction and regression models for predicting the ascending aortic aneurysm growth rate

升主动脉 动脉瘤 主成分分析 分割 人工智能 数学 模式识别(心理学) 支持向量机 回归分析 动脉瘤 线性回归 计算机科学 统计 主动脉 主动脉瘤 医学 心脏病学 放射科
作者
Leonardo Geronzi,Antonio Beltrán Martínez,Michel Rochette,Kexin Yan,Aline Bel‐Brunon,Pascal Haigron,Pierre Escrig,Jacques Tomasi,Morgan Daniel,Alain Lalande,Siyu Lin,Diana M. Marín-Castrillón,Olivier Bouchot,Jean Porterie,Pier Paolo Valentini,Marco Evangelos Biancolini
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:162: 107052-107052 被引量:12
标识
DOI:10.1016/j.compbiomed.2023.107052
摘要

ascending aortic aneurysm growth prediction is still challenging in clinics. In this study, we evaluate and compare the ability of local and global shape features to predict ascending aortic aneurysm growth. 70 patients with aneurysm, for which two 3D acquisitions were available, are included. Following segmentation, three local shape features are computed: (1) the ratio between maximum diameter and length of the ascending aorta centerline, (2) the ratio between the length of external and internal lines on the ascending aorta and (3) the tortuosity of the ascending tract. By exploiting longitudinal data, the aneurysm growth rate is derived. Using radial basis function mesh morphing, iso-topological surface meshes are created. Statistical shape analysis is performed through unsupervised principal component analysis (PCA) and supervised partial least squares (PLS). Two types of global shape features are identified: three PCA-derived and three PLS-based shape modes. Three regression models are set for growth prediction: two based on gaussian support vector machine using local and PCA-derived global shape features; the third is a PLS linear regression model based on the related global shape features. The prediction results are assessed and the aortic shapes most prone to growth are identified. the prediction root mean square error from leave-one-out cross-validation is: 0.112 mm/month, 0.083 mm/month and 0.066 mm/month for local, PCA-based and PLS-derived shape features, respectively. Aneurysms close to the root with a large initial diameter report faster growth. global shape features might provide an important contribution for predicting the aneurysm growth.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
生动觅柔完成签到,获得积分10
4秒前
Lucas应助lulu采纳,获得10
5秒前
科研通AI6应助sssshhh采纳,获得10
8秒前
妞妞完成签到,获得积分10
13秒前
15秒前
游侠EX发布了新的文献求助10
15秒前
大个应助拼搏问薇采纳,获得10
16秒前
16秒前
16秒前
zxhhm完成签到,获得积分10
18秒前
受伤破茧发布了新的文献求助10
19秒前
ding应助carl采纳,获得10
20秒前
栀蓝完成签到 ,获得积分10
20秒前
22秒前
Zjn-发布了新的文献求助10
23秒前
白白发布了新的文献求助10
27秒前
27秒前
酷炫的幻丝完成签到 ,获得积分10
28秒前
刘英丽发布了新的文献求助50
28秒前
科目三应助科研通管家采纳,获得10
28秒前
蓝天应助科研通管家采纳,获得10
28秒前
大个应助科研通管家采纳,获得10
28秒前
Verity应助科研通管家采纳,获得10
28秒前
科研通AI6应助科研通管家采纳,获得10
28秒前
科研通AI6应助科研通管家采纳,获得10
28秒前
Ava应助科研通管家采纳,获得10
28秒前
蓝天应助科研通管家采纳,获得10
28秒前
28秒前
拼搏应助科研通管家采纳,获得10
28秒前
田様应助科研通管家采纳,获得10
28秒前
在水一方应助科研通管家采纳,获得10
29秒前
Hello应助科研通管家采纳,获得10
29秒前
Orange应助科研通管家采纳,获得30
29秒前
无极微光应助科研通管家采纳,获得40
29秒前
脑洞疼应助科研通管家采纳,获得10
29秒前
orixero应助科研通管家采纳,获得10
29秒前
蓝天应助科研通管家采纳,获得10
29秒前
香蕉觅云应助科研通管家采纳,获得10
29秒前
Tamarin应助科研通管家采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557938
求助须知:如何正确求助?哪些是违规求助? 4642910
关于积分的说明 14669614
捐赠科研通 4584414
什么是DOI,文献DOI怎么找? 2514801
邀请新用户注册赠送积分活动 1488970
关于科研通互助平台的介绍 1459614