Computer-aided shape features extraction and regression models for predicting the ascending aortic aneurysm growth rate

升主动脉 动脉瘤 主成分分析 分割 人工智能 数学 模式识别(心理学) 支持向量机 回归分析 动脉瘤 线性回归 计算机科学 统计 主动脉 主动脉瘤 医学 心脏病学 放射科
作者
Leonardo Geronzi,Antonio Beltrán Martínez,Michel Rochette,Kexin Yan,Aline Bel‐Brunon,Pascal Haigron,Pierre Escrig,Jacques Tomasi,Morgan Daniel,Alain Lalande,Siyu Lin,Diana M. Marín-Castrillón,Olivier Bouchot,Jean Porterie,Pier Paolo Valentini,Marco Evangelos Biancolini
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:162: 107052-107052 被引量:12
标识
DOI:10.1016/j.compbiomed.2023.107052
摘要

ascending aortic aneurysm growth prediction is still challenging in clinics. In this study, we evaluate and compare the ability of local and global shape features to predict ascending aortic aneurysm growth. 70 patients with aneurysm, for which two 3D acquisitions were available, are included. Following segmentation, three local shape features are computed: (1) the ratio between maximum diameter and length of the ascending aorta centerline, (2) the ratio between the length of external and internal lines on the ascending aorta and (3) the tortuosity of the ascending tract. By exploiting longitudinal data, the aneurysm growth rate is derived. Using radial basis function mesh morphing, iso-topological surface meshes are created. Statistical shape analysis is performed through unsupervised principal component analysis (PCA) and supervised partial least squares (PLS). Two types of global shape features are identified: three PCA-derived and three PLS-based shape modes. Three regression models are set for growth prediction: two based on gaussian support vector machine using local and PCA-derived global shape features; the third is a PLS linear regression model based on the related global shape features. The prediction results are assessed and the aortic shapes most prone to growth are identified. the prediction root mean square error from leave-one-out cross-validation is: 0.112 mm/month, 0.083 mm/month and 0.066 mm/month for local, PCA-based and PLS-derived shape features, respectively. Aneurysms close to the root with a large initial diameter report faster growth. global shape features might provide an important contribution for predicting the aneurysm growth.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ttt发布了新的文献求助10
1秒前
萧寒发布了新的文献求助30
1秒前
xjs发布了新的文献求助10
1秒前
Xinxxx应助C5b6789n采纳,获得10
1秒前
2秒前
赘婿应助hxbhszus采纳,获得30
2秒前
3秒前
不一样的光完成签到,获得积分10
3秒前
TOF发布了新的文献求助10
3秒前
张怡完成签到,获得积分20
4秒前
vickie发布了新的文献求助10
5秒前
5秒前
6秒前
Xianao完成签到,获得积分10
6秒前
6秒前
6秒前
LLM发布了新的文献求助10
7秒前
7秒前
fengh峰发布了新的文献求助10
7秒前
8秒前
星辰大海应助翠花采纳,获得10
8秒前
8秒前
9秒前
Ma完成签到,获得积分10
9秒前
王花花发布了新的文献求助10
9秒前
10秒前
12123浪发布了新的文献求助30
10秒前
wang发布了新的文献求助10
11秒前
qwp发布了新的文献求助10
12秒前
默默发布了新的文献求助10
12秒前
14秒前
VV发布了新的文献求助30
15秒前
qian发布了新的文献求助10
15秒前
情怀应助Goooood采纳,获得10
15秒前
万能图书馆应助WWY采纳,获得10
15秒前
顾心心完成签到,获得积分10
16秒前
JamesPei应助PABBY采纳,获得10
16秒前
vickie完成签到,获得积分20
16秒前
李天磊发布了新的文献求助10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5297378
求助须知:如何正确求助?哪些是违规求助? 4446252
关于积分的说明 13838954
捐赠科研通 4331436
什么是DOI,文献DOI怎么找? 2377667
邀请新用户注册赠送积分活动 1372899
关于科研通互助平台的介绍 1338445