Computer-aided shape features extraction and regression models for predicting the ascending aortic aneurysm growth rate

升主动脉 动脉瘤 主成分分析 分割 人工智能 数学 模式识别(心理学) 支持向量机 回归分析 动脉瘤 线性回归 计算机科学 统计 主动脉 主动脉瘤 医学 心脏病学 放射科
作者
Leonardo Geronzi,Antonio Beltrán Martínez,Michel Rochette,Kexin Yan,Aline Bel‐Brunon,Pascal Haigron,Pierre Escrig,Jacques Tomasi,Morgan Daniel,Alain Lalande,Siyu Lin,Diana M. Marín-Castrillón,Olivier Bouchot,Jean Porterie,Pier Paolo Valentini,Marco Evangelos Biancolini
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:162: 107052-107052 被引量:12
标识
DOI:10.1016/j.compbiomed.2023.107052
摘要

ascending aortic aneurysm growth prediction is still challenging in clinics. In this study, we evaluate and compare the ability of local and global shape features to predict ascending aortic aneurysm growth. 70 patients with aneurysm, for which two 3D acquisitions were available, are included. Following segmentation, three local shape features are computed: (1) the ratio between maximum diameter and length of the ascending aorta centerline, (2) the ratio between the length of external and internal lines on the ascending aorta and (3) the tortuosity of the ascending tract. By exploiting longitudinal data, the aneurysm growth rate is derived. Using radial basis function mesh morphing, iso-topological surface meshes are created. Statistical shape analysis is performed through unsupervised principal component analysis (PCA) and supervised partial least squares (PLS). Two types of global shape features are identified: three PCA-derived and three PLS-based shape modes. Three regression models are set for growth prediction: two based on gaussian support vector machine using local and PCA-derived global shape features; the third is a PLS linear regression model based on the related global shape features. The prediction results are assessed and the aortic shapes most prone to growth are identified. the prediction root mean square error from leave-one-out cross-validation is: 0.112 mm/month, 0.083 mm/month and 0.066 mm/month for local, PCA-based and PLS-derived shape features, respectively. Aneurysms close to the root with a large initial diameter report faster growth. global shape features might provide an important contribution for predicting the aneurysm growth.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助djxdjt采纳,获得10
2秒前
3秒前
xuuuuumin发布了新的文献求助10
3秒前
3秒前
梁三岁发布了新的文献求助10
4秒前
士艳完成签到,获得积分10
5秒前
脑洞疼应助快乐的小bug采纳,获得10
6秒前
可靠的沛沛完成签到,获得积分10
6秒前
7秒前
龙共发布了新的文献求助10
7秒前
一叶知秋应助周济采纳,获得10
8秒前
8秒前
啊Cu吖完成签到,获得积分10
11秒前
12秒前
diuwaitao发布了新的文献求助100
12秒前
深情安青应助梁三岁采纳,获得10
12秒前
13秒前
Yang完成签到,获得积分10
14秒前
SciGPT应助puhong zhang采纳,获得10
14秒前
xaaowang发布了新的文献求助10
16秒前
能干的树叶完成签到,获得积分10
16秒前
17秒前
19秒前
xia发布了新的文献求助10
21秒前
21秒前
cc发布了新的文献求助10
22秒前
22秒前
斯文败类应助白桃采纳,获得10
22秒前
Leelelele应助大H采纳,获得10
22秒前
con发布了新的文献求助10
23秒前
顾矜应助草莓小酒采纳,获得10
24秒前
李天王完成签到 ,获得积分10
25秒前
李爱国应助777采纳,获得10
25秒前
26秒前
花玥鹿完成签到,获得积分10
26秒前
黔北胡歌发布了新的文献求助10
26秒前
FashionBoy应助xaaowang采纳,获得10
28秒前
清蒸可达鸭完成签到,获得积分10
29秒前
31秒前
人咬兔子发布了新的文献求助10
31秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4535785
求助须知:如何正确求助?哪些是违规求助? 3971418
关于积分的说明 12304035
捐赠科研通 3638229
什么是DOI,文献DOI怎么找? 2003038
邀请新用户注册赠送积分活动 1038601
科研通“疑难数据库(出版商)”最低求助积分说明 927979