亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Computer-aided shape features extraction and regression models for predicting the ascending aortic aneurysm growth rate

升主动脉 动脉瘤 主成分分析 分割 人工智能 数学 模式识别(心理学) 支持向量机 回归分析 动脉瘤 线性回归 计算机科学 统计 主动脉 主动脉瘤 医学 心脏病学 放射科
作者
Leonardo Geronzi,Antonio Beltrán Martínez,Michel Rochette,Kexin Yan,Aline Bel‐Brunon,Pascal Haigron,Pierre Escrig,Jacques Tomasi,Morgan Daniel,Alain Lalande,Siyu Lin,Diana M. Marín-Castrillón,Olivier Bouchot,Jean Porterie,Pier Paolo Valentini,Marco Evangelos Biancolini
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:162: 107052-107052 被引量:12
标识
DOI:10.1016/j.compbiomed.2023.107052
摘要

ascending aortic aneurysm growth prediction is still challenging in clinics. In this study, we evaluate and compare the ability of local and global shape features to predict ascending aortic aneurysm growth. 70 patients with aneurysm, for which two 3D acquisitions were available, are included. Following segmentation, three local shape features are computed: (1) the ratio between maximum diameter and length of the ascending aorta centerline, (2) the ratio between the length of external and internal lines on the ascending aorta and (3) the tortuosity of the ascending tract. By exploiting longitudinal data, the aneurysm growth rate is derived. Using radial basis function mesh morphing, iso-topological surface meshes are created. Statistical shape analysis is performed through unsupervised principal component analysis (PCA) and supervised partial least squares (PLS). Two types of global shape features are identified: three PCA-derived and three PLS-based shape modes. Three regression models are set for growth prediction: two based on gaussian support vector machine using local and PCA-derived global shape features; the third is a PLS linear regression model based on the related global shape features. The prediction results are assessed and the aortic shapes most prone to growth are identified. the prediction root mean square error from leave-one-out cross-validation is: 0.112 mm/month, 0.083 mm/month and 0.066 mm/month for local, PCA-based and PLS-derived shape features, respectively. Aneurysms close to the root with a large initial diameter report faster growth. global shape features might provide an important contribution for predicting the aneurysm growth.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
燕小冷完成签到 ,获得积分10
3秒前
zz完成签到 ,获得积分10
6秒前
lwm不想看文献完成签到 ,获得积分10
22秒前
ltttyy完成签到,获得积分10
22秒前
24秒前
激动的晓筠完成签到 ,获得积分10
24秒前
科研通AI6应助MOMO采纳,获得10
29秒前
文艺的枫叶完成签到 ,获得积分10
31秒前
49秒前
SCI发布了新的文献求助10
54秒前
科研通AI6应助MOMO采纳,获得10
58秒前
whj完成签到 ,获得积分10
58秒前
SCI完成签到,获得积分10
59秒前
1分钟前
能干的人完成签到,获得积分10
1分钟前
科研通AI6应助MOMO采纳,获得10
1分钟前
科目三应助科研通管家采纳,获得10
1分钟前
天天快乐应助科研通管家采纳,获得10
1分钟前
烟花应助科研通管家采纳,获得10
1分钟前
酷波er应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
fge完成签到,获得积分10
1分钟前
务实擎汉发布了新的文献求助10
1分钟前
1分钟前
MOMO发布了新的文献求助10
2分钟前
MchemG应助小天采纳,获得10
2分钟前
呜呜吴完成签到,获得积分10
2分钟前
靓丽的善斓完成签到 ,获得积分10
2分钟前
MOMO发布了新的文献求助10
2分钟前
MOMO发布了新的文献求助10
3分钟前
思源应助务实擎汉采纳,获得20
3分钟前
搜集达人应助科研通管家采纳,获得10
3分钟前
深情安青应助科研通管家采纳,获得10
3分钟前
三点前我必睡完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
MOMO发布了新的文献求助10
3分钟前
安青兰完成签到 ,获得积分10
3分钟前
一粟完成签到 ,获得积分10
4分钟前
MchemG完成签到,获得积分0
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5459093
求助须知:如何正确求助?哪些是违规求助? 4564894
关于积分的说明 14297231
捐赠科研通 4489961
什么是DOI,文献DOI怎么找? 2459447
邀请新用户注册赠送积分活动 1449114
关于科研通互助平台的介绍 1424585