Computer-aided shape features extraction and regression models for predicting the ascending aortic aneurysm growth rate

升主动脉 动脉瘤 主成分分析 分割 人工智能 数学 模式识别(心理学) 支持向量机 动脉瘤 线性回归 计算机科学 统计 主动脉 主动脉瘤 医学 心脏病学 放射科
作者
Leonardo Geronzi,Antonio Martinez,Michel Rochette,Kexin Yan,Aline Bel-Brunon,Pascal Haigron,Pierre Escrig,Jacques Tomasi,Morgan Daniel,Alain Lalande,Siyu Lin,Diana Marcela Marin-Castrillon,Olivier Bouchot,Jean Porterie,Pier Paolo Valentini,Marco Evangelos Biancolini
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:162: 107052-107052
标识
DOI:10.1016/j.compbiomed.2023.107052
摘要

ascending aortic aneurysm growth prediction is still challenging in clinics. In this study, we evaluate and compare the ability of local and global shape features to predict ascending aortic aneurysm growth. 70 patients with aneurysm, for which two 3D acquisitions were available, are included. Following segmentation, three local shape features are computed: (1) the ratio between maximum diameter and length of the ascending aorta centerline, (2) the ratio between the length of external and internal lines on the ascending aorta and (3) the tortuosity of the ascending tract. By exploiting longitudinal data, the aneurysm growth rate is derived. Using radial basis function mesh morphing, iso-topological surface meshes are created. Statistical shape analysis is performed through unsupervised principal component analysis (PCA) and supervised partial least squares (PLS). Two types of global shape features are identified: three PCA-derived and three PLS-based shape modes. Three regression models are set for growth prediction: two based on gaussian support vector machine using local and PCA-derived global shape features; the third is a PLS linear regression model based on the related global shape features. The prediction results are assessed and the aortic shapes most prone to growth are identified. the prediction root mean square error from leave-one-out cross-validation is: 0.112 mm/month, 0.083 mm/month and 0.066 mm/month for local, PCA-based and PLS-derived shape features, respectively. Aneurysms close to the root with a large initial diameter report faster growth. global shape features might provide an important contribution for predicting the aneurysm growth.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
hollow完成签到 ,获得积分10
3秒前
所所应助小枣采纳,获得10
3秒前
EBA发布了新的文献求助10
3秒前
4秒前
36完成签到 ,获得积分10
6秒前
仪表唐唐完成签到,获得积分10
6秒前
嘉嘉子发布了新的文献求助10
6秒前
橙子完成签到 ,获得积分10
6秒前
7秒前
Liu发布了新的文献求助30
8秒前
8秒前
9秒前
benben发布了新的文献求助30
11秒前
12秒前
Ning发布了新的文献求助10
12秒前
隐形曼青应助寒天采纳,获得10
12秒前
Hello应助张凡钰采纳,获得10
13秒前
SYLH应助科研通管家采纳,获得10
13秒前
斯文败类应助科研通管家采纳,获得10
14秒前
Wan完成签到,获得积分10
14秒前
SYLH应助科研通管家采纳,获得10
14秒前
大模型应助科研通管家采纳,获得10
14秒前
无花果应助科研通管家采纳,获得10
14秒前
SYLH应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
SYLH应助科研通管家采纳,获得10
14秒前
酷波er应助科研通管家采纳,获得20
14秒前
SYLH应助科研通管家采纳,获得10
14秒前
spy应助科研通管家采纳,获得10
15秒前
大个应助科研通管家采纳,获得10
15秒前
在水一方应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
华仔应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
Allenlee应助科研通管家采纳,获得50
15秒前
15秒前
SciGPT应助科研通管家采纳,获得10
15秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979788
求助须知:如何正确求助?哪些是违规求助? 3523806
关于积分的说明 11218898
捐赠科研通 3261339
什么是DOI,文献DOI怎么找? 1800544
邀请新用户注册赠送积分活动 879177
科研通“疑难数据库(出版商)”最低求助积分说明 807182