Computer-aided shape features extraction and regression models for predicting the ascending aortic aneurysm growth rate

升主动脉 动脉瘤 主成分分析 分割 人工智能 数学 模式识别(心理学) 支持向量机 动脉瘤 线性回归 计算机科学 统计 主动脉 主动脉瘤 医学 心脏病学 放射科
作者
Leonardo Geronzi,Antonio Martinez,Michel Rochette,Kexin Yan,Aline Bel-Brunon,Pascal Haigron,Pierre Escrig,Jacques Tomasi,Morgan Daniel,Alain Lalande,Siyu Lin,Diana Marcela Marin-Castrillon,Olivier Bouchot,Jean Porterie,Pier Paolo Valentini,Marco Evangelos Biancolini
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:162: 107052-107052
标识
DOI:10.1016/j.compbiomed.2023.107052
摘要

ascending aortic aneurysm growth prediction is still challenging in clinics. In this study, we evaluate and compare the ability of local and global shape features to predict ascending aortic aneurysm growth. 70 patients with aneurysm, for which two 3D acquisitions were available, are included. Following segmentation, three local shape features are computed: (1) the ratio between maximum diameter and length of the ascending aorta centerline, (2) the ratio between the length of external and internal lines on the ascending aorta and (3) the tortuosity of the ascending tract. By exploiting longitudinal data, the aneurysm growth rate is derived. Using radial basis function mesh morphing, iso-topological surface meshes are created. Statistical shape analysis is performed through unsupervised principal component analysis (PCA) and supervised partial least squares (PLS). Two types of global shape features are identified: three PCA-derived and three PLS-based shape modes. Three regression models are set for growth prediction: two based on gaussian support vector machine using local and PCA-derived global shape features; the third is a PLS linear regression model based on the related global shape features. The prediction results are assessed and the aortic shapes most prone to growth are identified. the prediction root mean square error from leave-one-out cross-validation is: 0.112 mm/month, 0.083 mm/month and 0.066 mm/month for local, PCA-based and PLS-derived shape features, respectively. Aneurysms close to the root with a large initial diameter report faster growth. global shape features might provide an important contribution for predicting the aneurysm growth.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
醉酒戏红尘完成签到,获得积分10
刚刚
眼圆广志完成签到,获得积分10
1秒前
如意翡翠发布了新的文献求助10
1秒前
BWZ完成签到,获得积分10
2秒前
3秒前
科研通AI5应助be采纳,获得10
6秒前
今后应助ysl采纳,获得10
8秒前
8秒前
唐冷之发布了新的文献求助10
8秒前
9秒前
slk完成签到 ,获得积分10
9秒前
11秒前
11秒前
完美的仙人掌完成签到,获得积分10
11秒前
11秒前
13秒前
14秒前
MLi发布了新的文献求助10
16秒前
大大小小发布了新的文献求助10
16秒前
yaoenhao发布了新的文献求助10
16秒前
迂鱼宇域发布了新的文献求助10
17秒前
17秒前
17秒前
阿懒发布了新的文献求助10
17秒前
科研通AI5应助初夏采纳,获得10
17秒前
ljforever发布了新的文献求助10
18秒前
asdasd完成签到,获得积分10
18秒前
璃月稻妻完成签到,获得积分10
18秒前
orixero应助无情芝麻采纳,获得10
18秒前
东方三问发布了新的文献求助10
18秒前
李爱国应助yu采纳,获得10
20秒前
junnie发布了新的文献求助10
21秒前
jackdawjo完成签到,获得积分10
21秒前
中中发布了新的文献求助10
22秒前
chcmuer完成签到,获得积分10
22秒前
日上三竿完成签到,获得积分10
23秒前
23秒前
小菜鸟001发布了新的文献求助10
23秒前
CX完成签到,获得积分20
23秒前
24秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Machine Learning Methods in Geoscience 1000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
Resilience of a Nation: A History of the Military in Rwanda 888
Massenspiele, Massenbewegungen. NS-Thingspiel, Arbeiterweibespiel und olympisches Zeremoniell 500
Essentials of Performance Analysis in Sport 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3727963
求助须知:如何正确求助?哪些是违规求助? 3273011
关于积分的说明 9979560
捐赠科研通 2988384
什么是DOI,文献DOI怎么找? 1639597
邀请新用户注册赠送积分活动 778819
科研通“疑难数据库(出版商)”最低求助积分说明 747817