An optical frequency comb generator, based on a simple electro-optic modulator in an optical resonator, can produce high-repetition-rate picosecond pulses. Unlike conventional picosecond lasers, the properties of these pulses are greatly affected by detuning the optical cavity and by dispersion caused by the electro-optic crystal. Picosecond pulses were studied in a physical device by numerical simulation and intensity autocorrelation measurements. The pulse width and pulse-to-pulse spacing were greatly affected by detuning the input laser frequency and the resonance of the optical resonator, and the numerical simulations showed that dispersion causes temporal ripples that are antisymmetric between pulse pairs.