膜
材料科学
立方氧化锆
过滤(数学)
微滤
化学工程
静电纺丝
微晶
多孔性
陶瓷
复合材料
聚合物
化学
冶金
工程类
统计
生物化学
数学
作者
Yuecheng Chen,Xue Mao,Haoru Shan,Jianmao Yang,Huaping Wang,Shiyan Chen,Feng Tian,Jianyong Yu,Bin Ding
出处
期刊:RSC Advances
[The Royal Society of Chemistry]
日期:2014-01-01
卷期号:4 (6): 2756-2763
被引量:34
摘要
Novel zirconia nanofibrous (ZNF) membranes with robust flexibility were prepared for the first time by a facile combination of electrospinning and sol–gel methods. By employing yttrium oxide incorporation, the as-prepared ZNF membranes can be dramatically changed from the extreme fragility to robust flexibility. Meanwhile, the flexibility and mechanical properties of ZNF membranes can be finely controlled by regulating the crystallite phase and crystallite size in zirconia fibers. Additionally, the porous analysis using synchrotron radiation small-angle X-ray scattering measurements have confirmed the correlation between the porous structure and flexibility. Interestingly, the mechanical properties of the ZNF membranes were also controlled by manipulating the precursor composition in hybrid fibers. Furthermore, the as-prepared flexible ZNF membranes exhibit excellent corrosion resistance and high filtration efficiency for zirconia nanoparticles from strong acid and alkaline solutions, which makes them a good candidate as microfiltration membranes in waste water treatment, and new insight also suggested them as a promising candidate for thermal insulation, high temperature filtration, catalyst carriers, etc.
科研通智能强力驱动
Strongly Powered by AbleSci AI