Prediction of post‐translational glycosylation and phosphorylation of proteins from the amino acid sequence

蛋白质组学 计算生物学 糖基化 磷酸化 计算机科学 鉴定(生物学) 蛋白质功能 功能(生物学) 翻译后修饰 生物信息学 生物 细胞生物学 生物化学 基因 植物
作者
Nikolaj Blom,Thomas Sicheritz‐Pontén,Ramneek Gupta,Steen Gammeltoft,Søren Brunak
出处
期刊:Proteomics [Wiley]
卷期号:4 (6): 1633-1649 被引量:1937
标识
DOI:10.1002/pmic.200300771
摘要

Abstract Post‐translational modifications (PTMs) occur on almost all proteins analyzed to date. The function of a modified protein is often strongly affected by these modifications and therefore increased knowledge about the potential PTMs of a target protein may increase our understanding of the molecular processes in which it takes part. High‐throughput methods for the identification of PTMs are being developed, in particular within the fields of proteomics and mass spectrometry. However, these methods are still in their early stages, and it is indeed advantageous to cut down on the number of experimental steps by integrating computational approaches into the validation procedures. Many advanced methods for the prediction of PTMs exist and many are made publicly available. We describe our experiences with the development of prediction methods for phosphorylation and glycosylation sites and the development of PTM‐specific databases. In addition, we discuss novel ideas for PTM visualization (exemplified by kinase landscapes) and improvements for prediction specificity (by using ESS – evolutionary stable sites). As an example, we present a new method for kinase‐specific prediction of phosphorylation sites, NetPhosK, which extends our earlier and more general tool, NetPhos. The new server, NetPhosK, is made publicly available at the URL http://www.cbs.dtu.dk/services/NetPhosK/. The issues of underestimation, over‐prediction and strategies for improving prediction specificity are also discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
愉快的夏菡完成签到,获得积分10
刚刚
研友_gnv61n完成签到,获得积分10
刚刚
zmy完成签到,获得积分10
刚刚
小蘑菇应助守约采纳,获得10
1秒前
1秒前
空白发布了新的文献求助10
2秒前
buno应助721采纳,获得20
2秒前
石阶上完成签到 ,获得积分10
2秒前
du完成签到 ,获得积分10
2秒前
Xu完成签到,获得积分10
3秒前
mmmm完成签到,获得积分10
3秒前
3秒前
情怀应助YY采纳,获得10
3秒前
懦弱的安珊完成签到,获得积分10
4秒前
Akim应助xiaokezhang采纳,获得10
4秒前
4秒前
柠木完成签到 ,获得积分10
4秒前
系统提示发布了新的文献求助10
4秒前
marigold完成签到,获得积分10
4秒前
Gaoge完成签到,获得积分10
5秒前
愉快的无招完成签到,获得积分10
5秒前
5秒前
HEIKU应助习习采纳,获得10
6秒前
6秒前
6秒前
6秒前
合适苗条完成签到,获得积分10
6秒前
Zn应助开水泡饼采纳,获得10
6秒前
科目三应助Liu采纳,获得10
7秒前
7秒前
eating完成签到,获得积分10
7秒前
李双艳完成签到,获得积分10
7秒前
英姑应助科研混子采纳,获得10
7秒前
li完成签到,获得积分10
8秒前
Hungrylunch应助woshiwuziq采纳,获得20
9秒前
合适苗条发布了新的文献求助10
9秒前
安静听白发布了新的文献求助10
9秒前
krystal发布了新的文献求助10
9秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678