Detecting Humans in Dense Crowds Using Locally-Consistent Scale Prior and Global Occlusion Reasoning

先验概率 透视失真 人工智能 人群 计算机科学 模式识别(心理学) 背景(考古学) 比例(比率) 计算机视觉 马尔可夫随机场 目标检测 透视图(图形) 机器学习 图像(数学) 图像分割 贝叶斯概率 物理 古生物学 生物 量子力学 计算机安全
作者
Haroon Idrees,Khurram Soomro,Mubarak Shah
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:37 (10): 1986-1998 被引量:122
标识
DOI:10.1109/tpami.2015.2396051
摘要

Human detection in dense crowds is an important problem, as it is a prerequisite to many other visual tasks, such as tracking, counting, action recognition or anomaly detection in behaviors exhibited by individuals in a dense crowd. This problem is challenging due to the large number of individuals, small apparent size, severe occlusions and perspective distortion. However, crowded scenes also offer contextual constraints that can be used to tackle these challenges. In this paper, we explore context for human detection in dense crowds in the form of a locally-consistent scale prior which captures the similarity in scale in local neighborhoods and its smooth variation over the image. Using the scale and confidence of detections obtained from an underlying human detector, we infer scale and confidence priors using Markov Random Field. In an iterative mechanism, the confidences of detection hypotheses are modified to reflect consistency with the inferred priors, and the priors are updated based on the new detections. The final set of detections obtained are then reasoned for occlusion using Binary Integer Programming where overlaps and relations between parts of individuals are encoded as linear constraints. Both human detection and occlusion reasoning in proposed approach are solved with local neighbor-dependent constraints, thereby respecting the inter-dependence between individuals characteristic to dense crowd analysis. In addition, we propose a mechanism to detect different combinations of body parts without requiring annotations for individual combinations. We performed experiments on a new and extremely challenging dataset of dense crowd images showing marked improvement over the underlying human detector.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bbb关闭了bbb文献求助
刚刚
刚刚
科研通AI5应助韶安萱采纳,获得10
2秒前
Hakunamatata完成签到 ,获得积分10
3秒前
3秒前
3秒前
传奇3应助笑笑采纳,获得10
3秒前
3秒前
4秒前
shi发布了新的文献求助10
5秒前
6秒前
hhh关闭了hhh文献求助
6秒前
LIGNET完成签到,获得积分10
7秒前
无期发布了新的文献求助10
7秒前
共享精神应助阔达蓝血采纳,获得10
7秒前
7秒前
黎明发布了新的文献求助10
9秒前
9秒前
YOLO完成签到 ,获得积分10
9秒前
科研通AI2S应助wxyllxx采纳,获得10
9秒前
10秒前
辛勤的手机完成签到,获得积分10
10秒前
小蘑菇应助鉴湖采纳,获得10
10秒前
李爱国应助nbzhan采纳,获得10
10秒前
迟迟发布了新的文献求助10
10秒前
FIN应助吉幻柏采纳,获得10
11秒前
11秒前
嘿嘿发布了新的文献求助10
12秒前
12秒前
听海完成签到,获得积分10
12秒前
Owen应助wxfacai采纳,获得10
13秒前
Jasper发布了新的文献求助10
13秒前
14秒前
Jerry给Jerry的求助进行了留言
14秒前
小蘑菇应助南有乔木采纳,获得10
14秒前
Abi发布了新的文献求助10
15秒前
顾矜应助meimei采纳,获得10
15秒前
alex发布了新的文献求助30
18秒前
hhh发布了新的文献求助10
18秒前
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 720
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3565922
求助须知:如何正确求助?哪些是违规求助? 3138683
关于积分的说明 9428454
捐赠科研通 2839408
什么是DOI,文献DOI怎么找? 1560695
邀请新用户注册赠送积分活动 729854
科研通“疑难数据库(出版商)”最低求助积分说明 717669