Bayesian Compressive Sensing

压缩传感 信号重构 算法 度量(数据仓库) 基函数 数学 贝叶斯概率 信号(编程语言) 基础(线性代数) 计算机科学 信号处理 数学分析 统计 几何学 数据挖掘 雷达 电信 程序设计语言
作者
Shihao Ji,Ya Xue,Lawrence Carin
出处
期刊:IEEE Transactions on Signal Processing [Institute of Electrical and Electronics Engineers]
卷期号:56 (6): 2346-2356 被引量:2229
标识
DOI:10.1109/tsp.2007.914345
摘要

The data of interest are assumed to be represented as N-dimensional real vectors, and these vectors are compressible in some linear basis B, implying that the signal can be reconstructed accurately using only a small number M Lt N of basis-function coefficients associated with B. Compressive sensing is a framework whereby one does not measure one of the aforementioned N-dimensional signals directly, but rather a set of related measurements, with the new measurements a linear combination of the original underlying N-dimensional signal. The number of required compressive-sensing measurements is typically much smaller than N, offering the potential to simplify the sensing system. Let f denote the unknown underlying N-dimensional signal, and g a vector of compressive-sensing measurements, then one may approximate f accurately by utilizing knowledge of the (under-determined) linear relationship between f and g, in addition to knowledge of the fact that f is compressible in B. In this paper we employ a Bayesian formalism for estimating the underlying signal f based on compressive-sensing measurements g. The proposed framework has the following properties: i) in addition to estimating the underlying signal f, "error bars" are also estimated, these giving a measure of confidence in the inverted signal; ii) using knowledge of the error bars, a principled means is provided for determining when a sufficient number of compressive-sensing measurements have been performed; iii) this setting lends itself naturally to a framework whereby the compressive sensing measurements are optimized adaptively and hence not determined randomly; and iv) the framework accounts for additive noise in the compressive-sensing measurements and provides an estimate of the noise variance. In this paper we present the underlying theory, an associated algorithm, example results, and provide comparisons to other compressive-sensing inversion algorithms in the literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
01231009yrjz完成签到,获得积分10
刚刚
2秒前
2秒前
无奈的从梦完成签到 ,获得积分10
2秒前
3秒前
3秒前
FashionBoy应助阔达如南采纳,获得10
3秒前
lcy发布了新的文献求助30
3秒前
傻傻的芷巧完成签到,获得积分10
4秒前
4秒前
慕青应助慕青采纳,获得10
5秒前
5秒前
6秒前
6秒前
6秒前
香蕉君达完成签到,获得积分10
6秒前
6秒前
7秒前
jing发布了新的文献求助10
7秒前
会飞的鱼完成签到 ,获得积分10
8秒前
一夜暴富发布了新的文献求助10
8秒前
赘婿应助Begonia采纳,获得10
8秒前
爱笑的无心完成签到 ,获得积分10
9秒前
唐妮发布了新的文献求助10
9秒前
9秒前
小富婆完成签到 ,获得积分10
9秒前
共享精神应助瘦瘦的馒头采纳,获得10
10秒前
10秒前
YY发布了新的文献求助10
10秒前
超级仇天完成签到,获得积分20
10秒前
11秒前
默欢完成签到,获得积分10
11秒前
zz完成签到,获得积分10
12秒前
12秒前
张展鹏发布了新的文献求助10
12秒前
12秒前
0376完成签到,获得积分10
13秒前
李爱国应助lcy采纳,获得10
13秒前
14秒前
王灿灿举报洁净钢笔求助涉嫌违规
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152854
求助须知:如何正确求助?哪些是违规求助? 2804064
关于积分的说明 7856939
捐赠科研通 2461847
什么是DOI,文献DOI怎么找? 1310502
科研通“疑难数据库(出版商)”最低求助积分说明 629279
版权声明 601788