压缩传感
信号重构
算法
度量(数据仓库)
基函数
数学
贝叶斯概率
信号(编程语言)
基础(线性代数)
计算机科学
信号处理
数学分析
统计
几何学
数据挖掘
雷达
电信
程序设计语言
作者
Shihao Ji,Ya Xue,Lawrence Carin
标识
DOI:10.1109/tsp.2007.914345
摘要
The data of interest are assumed to be represented as N-dimensional real vectors, and these vectors are compressible in some linear basis B, implying that the signal can be reconstructed accurately using only a small number M Lt N of basis-function coefficients associated with B. Compressive sensing is a framework whereby one does not measure one of the aforementioned N-dimensional signals directly, but rather a set of related measurements, with the new measurements a linear combination of the original underlying N-dimensional signal. The number of required compressive-sensing measurements is typically much smaller than N, offering the potential to simplify the sensing system. Let f denote the unknown underlying N-dimensional signal, and g a vector of compressive-sensing measurements, then one may approximate f accurately by utilizing knowledge of the (under-determined) linear relationship between f and g, in addition to knowledge of the fact that f is compressible in B. In this paper we employ a Bayesian formalism for estimating the underlying signal f based on compressive-sensing measurements g. The proposed framework has the following properties: i) in addition to estimating the underlying signal f, "error bars" are also estimated, these giving a measure of confidence in the inverted signal; ii) using knowledge of the error bars, a principled means is provided for determining when a sufficient number of compressive-sensing measurements have been performed; iii) this setting lends itself naturally to a framework whereby the compressive sensing measurements are optimized adaptively and hence not determined randomly; and iv) the framework accounts for additive noise in the compressive-sensing measurements and provides an estimate of the noise variance. In this paper we present the underlying theory, an associated algorithm, example results, and provide comparisons to other compressive-sensing inversion algorithms in the literature.
科研通智能强力驱动
Strongly Powered by AbleSci AI