U-Net based neural network for fringe pattern denoising

计算机科学 人工智能 残余物 降噪 模式识别(心理学) 卷积神经网络 特征(语言学) 人工神经网络 噪音(视频) 过程(计算) 散斑噪声 编码(内存) 斑点图案 算法 图像(数学) 操作系统 哲学 语言学
作者
Javier Gurrola-Ramos,Oscar Dalmau,Teresa E. Alarcón
出处
期刊:Optics and Lasers in Engineering [Elsevier BV]
卷期号:149: 106829-106829 被引量:22
标识
DOI:10.1016/j.optlaseng.2021.106829
摘要

Fringe patterns from different optical measurement systems are widely used in scientific and engineering applications. However, fringe patterns are often corrupted by speckle noise, which is necessary to be removed to accurately recover the information encoded in the phase of the fringe pattern. In this paper we propose a lightweight residual dense neural network based on the U-net neural network model (LRDUNet) for fringe pattern denoising. The encoding and decoding layers of the LRDUNet consist of grouped densely connected convolutional layers for the sake of reusing the feature maps and reducing the number of trainable parameters. Additionally, local residual learning is used to avoid the vanishing gradient problem and speed up the learning process. We compare the proposed method versus state-of-the-art methods and present a study of parameters where we demonstrate that computationally simpler versions of the proposed model are still quite competitive. Experiments on simulated and real fringe patterns show that the proposed method outperforms state-of-the-art methods by restoring the main features of the fringe patterns, achieving an average of 41 dB of PSNR on simulated images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
研友_VZG7GZ应助刘浩营采纳,获得10
2秒前
3秒前
传奇3应助@@@采纳,获得10
3秒前
6秒前
flameWei发布了新的文献求助10
6秒前
9秒前
科研通AI2S应助水流众生采纳,获得10
9秒前
13秒前
13秒前
13秒前
慕青应助平常的元蝶采纳,获得10
19秒前
善学以致用应助Skuld采纳,获得10
19秒前
chrainy发布了新的文献求助10
19秒前
CyrusSo524应助黎乐荷采纳,获得10
19秒前
刘浩营发布了新的文献求助10
20秒前
20秒前
21秒前
21秒前
量子星尘发布了新的文献求助10
22秒前
生姜完成签到,获得积分10
23秒前
24秒前
25秒前
zhaozhaozhao发布了新的文献求助10
26秒前
26秒前
26秒前
26秒前
flameWei关注了科研通微信公众号
27秒前
chrainy完成签到,获得积分10
27秒前
Bio应助科研通管家采纳,获得30
27秒前
领导范儿应助科研通管家采纳,获得10
27秒前
大模型应助科研通管家采纳,获得10
27秒前
czh应助科研通管家采纳,获得10
27秒前
慕青应助科研通管家采纳,获得10
27秒前
27秒前
田様应助科研通管家采纳,获得10
27秒前
小二郎应助科研通管家采纳,获得10
27秒前
顾矜应助科研通管家采纳,获得10
27秒前
27秒前
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988975
求助须知:如何正确求助?哪些是违规求助? 3531316
关于积分的说明 11253424
捐赠科研通 3269917
什么是DOI,文献DOI怎么找? 1804830
邀请新用户注册赠送积分活动 882063
科研通“疑难数据库(出版商)”最低求助积分说明 809068