Neural alignment predicts learning outcomes in students taking an introduction to computer science course

集合(抽象数据类型) 计算机科学 人工神经网络 人工智能 数学教育 心理学 程序设计语言
作者
Meir Meshulam,Liat Hasenfratz,Hanna Hillman,Yunfei Liu,Mai Nguyen,Kenneth A. Norman,Uri Hasson
出处
期刊:Nature Communications [Springer Nature]
卷期号:12 (1) 被引量:33
标识
DOI:10.1038/s41467-021-22202-3
摘要

Abstract Despite major advances in measuring human brain activity during and after educational experiences, it is unclear how learners internalize new content, especially in real-life and online settings. In this work, we introduce a neural approach to predicting and assessing learning outcomes in a real-life setting. Our approach hinges on the idea that successful learning involves forming the right set of neural representations, which are captured in canonical activity patterns shared across individuals. Specifically, we hypothesized that learning is mirrored in neural alignment: the degree to which an individual learner’s neural representations match those of experts, as well as those of other learners. We tested this hypothesis in a longitudinal functional MRI study that regularly scanned college students enrolled in an introduction to computer science course. We additionally scanned graduate student experts in computer science. We show that alignment among students successfully predicts overall performance in a final exam. Furthermore, within individual students, we find better learning outcomes for concepts that evoke better alignment with experts and with other students, revealing neural patterns associated with specific learned concepts in individuals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小章完成签到,获得积分10
刚刚
木刻青、完成签到,获得积分10
1秒前
加厚加大完成签到 ,获得积分10
1秒前
孝顺的如曼完成签到,获得积分10
2秒前
Alienwalker完成签到 ,获得积分10
2秒前
野草完成签到,获得积分10
2秒前
朴实依琴完成签到,获得积分10
3秒前
晶格畸变完成签到,获得积分10
3秒前
聪明的书包完成签到 ,获得积分10
3秒前
3秒前
XpenG完成签到,获得积分10
4秒前
舒心完成签到,获得积分10
4秒前
YUN发布了新的文献求助10
4秒前
leid完成签到 ,获得积分10
4秒前
4秒前
4秒前
Yang完成签到 ,获得积分10
5秒前
Mp4完成签到 ,获得积分10
5秒前
5秒前
谷粱诗云发布了新的文献求助10
5秒前
一晃儿发布了新的文献求助10
6秒前
6秒前
new完成签到 ,获得积分10
7秒前
7秒前
drbrianlau完成签到,获得积分10
7秒前
7秒前
8秒前
晨宸发布了新的文献求助30
8秒前
梦鱼完成签到,获得积分10
8秒前
orixero应助大翟采纳,获得10
9秒前
Kora应助lwk205采纳,获得10
10秒前
wanghaowen完成签到,获得积分10
10秒前
lyj完成签到 ,获得积分10
10秒前
柳易槐完成签到,获得积分10
10秒前
江蓠完成签到,获得积分10
10秒前
处处铃铛响完成签到,获得积分10
10秒前
11秒前
柚子完成签到 ,获得积分10
11秒前
labulabu完成签到,获得积分10
11秒前
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455774
求助须知:如何正确求助?哪些是违规求助? 3051058
关于积分的说明 9023842
捐赠科研通 2739691
什么是DOI,文献DOI怎么找? 1502922
科研通“疑难数据库(出版商)”最低求助积分说明 694646
邀请新用户注册赠送积分活动 693451