Novel first-principles insights into graphene fluorination

石墨烯 吸附 化学 二氟化氙 氧气 分子 光化学 化学反应 化学物理 材料科学 无机化学 纳米技术 物理化学 有机化学
作者
Tahereh Malakoutikhah,S. Javad Hashemifar,Mojtaba Alaei
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:157 (5) 被引量:3
标识
DOI:10.1063/5.0091279
摘要

Fluorination of graphene sheets with xenon difluoride leads to the formation of the widest bandgap Gr derivative, namely, fluorographene. Accurate experimental observations distinguish two stages of mechanism in the fluorination procedure: the half-fluorination stage, wherein one side of the Gr sheet is rapidly fluorinated, and the full-fluorination stage, involving much slower fluorination of the opposite side of the sheet [R. J. Kashtiban et al., Nat. Commun. 5, 5902 (2014)]. Here, we perform comprehensive density functional calculations to illustrate accurate microscopic insights into the much slower rate of the full-fluorination stage compared with the half-fluorination one. The calculated minimum energy paths for the half- and full-fluorination processes demonstrate much enhanced fluorine adsorption after the half-fluorination stage, which sounds inconsistent with the experimental picture. This ambiguity is explained in terms of significant chemical activation of the graphene sheet after half-fluorination, which remarkably facilitates the formation of chemical contaminants in the system and, thus, substantially slows down the full-fluorination procedure. After considering the binding energy and durability of the relevant chemical species, including hydrogen, oxygen, and nitrogen molecules and xenon atom, it is argued that oxygen-fluorine ligands are the most likely chemical contaminants opposing the complete fluorination of a graphene sheet. Then, we propose an oxygen desorption mechanism to carefully explain the much enhanced rate of the full-fluorination procedure at elevated temperatures. The potential photocatalytic application of the pristine and defected samples in water splitting and carbon dioxide reduction reactions is also discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
charllar关注了科研通微信公众号
1秒前
1秒前
ysq1050015836完成签到,获得积分10
2秒前
2秒前
852应助老坛采纳,获得10
3秒前
郭悦聪完成签到,获得积分10
4秒前
4秒前
5秒前
Clancy完成签到,获得积分20
5秒前
六子发布了新的文献求助10
6秒前
6秒前
ahui发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
单于笑卉发布了新的文献求助30
8秒前
LIN发布了新的文献求助10
9秒前
科研通AI5应助小可爱采纳,获得10
10秒前
12秒前
14秒前
durian完成签到,获得积分10
14秒前
CodeCraft应助Clancy采纳,获得10
14秒前
老坛完成签到,获得积分20
15秒前
16秒前
lizzzzzz完成签到,获得积分10
17秒前
吴彦祖完成签到,获得积分10
18秒前
Thing发布了新的文献求助10
20秒前
三岁半完成签到 ,获得积分10
20秒前
Forst关注了科研通微信公众号
22秒前
22秒前
22秒前
charllar发布了新的文献求助10
23秒前
yyw完成签到,获得积分10
23秒前
26秒前
26秒前
汉堡包应助王柯采纳,获得10
26秒前
26秒前
27秒前
俎树同完成签到 ,获得积分10
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3554023
求助须知:如何正确求助?哪些是违规求助? 3129774
关于积分的说明 9384215
捐赠科研通 2828860
什么是DOI,文献DOI怎么找? 1555285
邀请新用户注册赠送积分活动 725954
科研通“疑难数据库(出版商)”最低求助积分说明 715349