重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Evaluating food supply chain emissions from Japanese household consumption

碳足迹 温室气体 消费(社会学) 农业经济学 人均 供应链 大都市区 家庭收入 自然资源经济学 业务 经济 地理 环境卫生 营销 人口 医学 生态学 社会科学 考古 社会学 生物
作者
Xi Li,Zhigang Ouyang,Qiong Zhang,Wen‐Long Shang,Liqiao Huang,Yi Wu,Yuning Gao
出处
期刊:Applied Energy [Elsevier]
卷期号:306: 118080-118080 被引量:35
标识
DOI:10.1016/j.apenergy.2021.118080
摘要

Given its substantial contribution to greenhouse gas emissions, household consumption has been identified as a major contributor to climate change. Among various household activities, eating is a basic activity undertaken by everyone, and thus the environmental consequences of food consumption are attracting increasing attention. Although household food consumption has been widely discussed, there is still no comprehensive carbon footprint analysis of the entire food supply chain, including the differences among household segments. To address this knowledge gap, in this paper we use a modified environmental input–output model to quantify food-related carbon footprints throughout the entire supply chain. Taking Japan as a case study, results indicate that more than 60% of the food-related carbon footprint occurs at the production stage, while carbon emissions from the wholesale and retail stages account for up to about 38%. Furthermore, the consumption of the richest households produces the highest per capita carbon emissions of all income groups, and this holds true for their consumption across food types. Other findings include that in metropolitan areas, such as the Kanto area, dining out accounts for the biggest share, contributing 16% of total emissions, and that both the regional- or income-based disparity in emissions are significantly induced by red meat consumption. Optimizing food supply chain management and encouraging local consumption of fresh fruit, vegetables and meat are therefore essential for facilitating reduced household food carbon emissions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小飞子完成签到,获得积分20
2秒前
2秒前
科研通AI6应助含糊的紫文采纳,获得10
3秒前
3秒前
NexusExplorer应助孤丹采纳,获得10
4秒前
4秒前
舒心的柚子完成签到,获得积分10
4秒前
5秒前
Silvia完成签到,获得积分10
6秒前
Chouvikin发布了新的文献求助10
6秒前
6秒前
6秒前
玉米完成签到,获得积分10
7秒前
微笑白萱发布了新的文献求助10
7秒前
领导范儿应助maybe豪采纳,获得10
7秒前
科研虫文献求助号完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
8秒前
8秒前
凌源枫完成签到 ,获得积分10
8秒前
77发布了新的文献求助10
8秒前
8秒前
府于杰完成签到,获得积分10
9秒前
muzi完成签到,获得积分20
9秒前
烟花应助谢谢谢采纳,获得10
9秒前
暗栀完成签到,获得积分20
9秒前
平常的念柏完成签到,获得积分10
9秒前
11发布了新的文献求助10
9秒前
9秒前
NexusExplorer应助马伊采纳,获得10
10秒前
乐乐应助49采纳,获得10
10秒前
852应助九叶采纳,获得10
10秒前
桐桐应助科研通管家采纳,获得10
10秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
领导范儿应助科研通管家采纳,获得10
11秒前
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466870
求助须知:如何正确求助?哪些是违规求助? 4570586
关于积分的说明 14326244
捐赠科研通 4497151
什么是DOI,文献DOI怎么找? 2463752
邀请新用户注册赠送积分活动 1452682
关于科研通互助平台的介绍 1427605