Unsupervised Discrete Hashing With Affinity Similarity

计算机科学 二进制代码 人工智能 无监督学习 散列函数 模式识别(心理学) 杠杆(统计) 图像检索 量化(信号处理) 机器学习 二进制数 数据挖掘 图像(数学) 算法 数学 计算机安全 算术
作者
Sheng Jin,Hongxun Yao,Qin Zhou,Yao Liu,Jianqiang Huang,Xian–Sheng Hua
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 6130-6141 被引量:11
标识
DOI:10.1109/tip.2021.3091895
摘要

In recent years, supervised hashing has been validated to greatly boost the performance of image retrieval. However, the label-hungry property requires massive label collection, making it intractable in practical scenarios. To liberate the model training procedure from laborious manual annotations, some unsupervised methods are proposed. However, the following two factors make unsupervised algorithms inferior to their supervised counterparts: (1) Without manually-defined labels, it is difficult to capture the semantic information across data, which is of crucial importance to guide robust binary code learning. (2) The widely adopted relaxation on binary constraints results in quantization error accumulation in the optimization procedure. To address the above-mentioned problems, in this paper, we propose a novel Unsupervised Discrete Hashing method (UDH). Specifically, to capture the semantic information, we propose a balanced graph-based semantic loss which explores the affinity priors in the original feature space. Then, we propose a novel self-supervised loss, termed orthogonal consistent loss, which can leverage semantic loss of instance and impose independence of codes. Moreover, by integrating the discrete optimization into the proposed unsupervised framework, the binary constraints are consistently preserved, alleviating the influence of quantization errors. Extensive experiments demonstrate that UDH outperforms state-of-the-art unsupervised methods for image retrieval.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
充电宝应助熙子采纳,获得10
4秒前
Akeshi完成签到,获得积分10
4秒前
zzz发布了新的文献求助10
4秒前
6秒前
Akeshi发布了新的文献求助10
7秒前
烂漫时发布了新的文献求助10
7秒前
chemzhang发布了新的文献求助10
8秒前
xiangwang发布了新的文献求助100
9秒前
wtxmmm完成签到,获得积分10
9秒前
10秒前
11秒前
顺利大王完成签到,获得积分10
11秒前
巴拉完成签到,获得积分10
12秒前
共享精神应助heye采纳,获得10
13秒前
kai关闭了kai文献求助
15秒前
qingfeng发布了新的文献求助10
16秒前
16秒前
17秒前
17秒前
CipherSage应助Prime采纳,获得10
17秒前
小邹完成签到,获得积分10
18秒前
19秒前
treefire发布了新的文献求助10
19秒前
烧麦专家完成签到 ,获得积分10
21秒前
gxhyuanhe发布了新的文献求助10
21秒前
qingfeng完成签到,获得积分20
22秒前
22秒前
chemzhang完成签到 ,获得积分10
22秒前
熙子发布了新的文献求助10
24秒前
wangzai发布了新的文献求助10
24秒前
佳佳发布了新的文献求助10
25秒前
25秒前
orixero应助qingfeng采纳,获得10
27秒前
28秒前
英俊的铭应助李白的白123采纳,获得10
28秒前
痴情的萃完成签到,获得积分10
29秒前
55555发布了新的文献求助10
29秒前
文静萤发布了新的文献求助10
31秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313875
求助须知:如何正确求助?哪些是违规求助? 2946172
关于积分的说明 8528716
捐赠科研通 2621728
什么是DOI,文献DOI怎么找? 1434045
科研通“疑难数据库(出版商)”最低求助积分说明 665112
邀请新用户注册赠送积分活动 650697