Battery Model Identification Approach for Electric Forklift Application

电池(电) 荷电状态 非线性系统 健康状况 鉴定(生物学) 计算机科学 系统标识 电动汽车 汽车工程 能量(信号处理) 可靠性工程 工程类 度量(数据仓库) 数据挖掘 功率(物理) 统计 数学 物理 生物 量子力学 植物
作者
Cynthia Thamires da Silva,Bruno Martin de Alcântara Dias,Rui Esteves Araújo,Eduardo Lorenzetti Pellini,Armando Antônio Maria Laganá
出处
期刊:Energies [MDPI AG]
卷期号:14 (19): 6221-6221 被引量:3
标识
DOI:10.3390/en14196221
摘要

Electric forklifts are extremely important for the world’s logistics and industry. Lead acid batteries are the most common energy storage system for electric forklifts; however, to ensure more energy efficiency and less environmental pollution, they are starting to use lithium batteries. All lithium batteries need a battery management system (BMS) for safety, long life cycle and better efficiency. This system is capable to estimate the battery state of charge, state of health and state of function, but those cannot be measured directly and must be estimated indirectly using battery models. Consequently, accurate battery models are essential for implementation of advance BMS and enhance its accuracy. This work presents a comparison between four different models, four different types of optimizers algorithms and seven different experiment designs. The purpose is defining the best model, with the best optimizer, and the best experiment design for battery parameter estimation. This best model is intended for a state of charge estimation on a battery applied on an electric forklift. The nonlinear grey box model with the nonlinear least square method presented a better result for this purpose. This model was estimated with the best experiment design which was defined considering the fit to validation data, the parameter standard deviation and the output variance. With this approach, it was possible to reach more than 80% of fit in different validation data, a non-biased and little prediction error and a good one-step ahead result.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斜玉完成签到,获得积分10
刚刚
铁路桥完成签到,获得积分10
刚刚
刚刚
1秒前
花样年华完成签到,获得积分0
1秒前
刘若鑫完成签到 ,获得积分10
1秒前
大树应助迷路小丸子采纳,获得10
2秒前
ZZZ完成签到,获得积分10
2秒前
李禾和发布了新的文献求助10
2秒前
欣喜电源发布了新的文献求助10
2秒前
西NO米娅发布了新的文献求助10
2秒前
隐形曼青应助buxiaode512采纳,获得10
2秒前
小马甲应助江湖小刀采纳,获得10
4秒前
周繁发布了新的文献求助10
4秒前
玄魁发布了新的文献求助10
4秒前
咚咚咚完成签到,获得积分10
4秒前
星河完成签到,获得积分10
4秒前
大白发布了新的文献求助10
4秒前
生鱼安乐完成签到,获得积分10
5秒前
wdp发布了新的文献求助10
5秒前
6秒前
6秒前
陈秀娟完成签到,获得积分10
6秒前
6秒前
芳菲依旧应助Cloudyyy采纳,获得50
7秒前
7秒前
高挑的冰兰完成签到,获得积分10
7秒前
学不懂看不会完成签到,获得积分10
7秒前
赘婿应助zhaozhao采纳,获得10
7秒前
噜噜发布了新的文献求助50
8秒前
9秒前
小崔读研完成签到 ,获得积分10
10秒前
甜甜千兰发布了新的文献求助10
10秒前
10秒前
英姑应助无私的聪展采纳,获得30
11秒前
隐形曼青应助无私的聪展采纳,获得30
11秒前
orixero应助无私的聪展采纳,获得30
11秒前
11秒前
Akim应助无私的聪展采纳,获得30
11秒前
星辰大海应助无私的聪展采纳,获得30
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5652435
求助须知:如何正确求助?哪些是违规求助? 4787491
关于积分的说明 15060101
捐赠科研通 4811034
什么是DOI,文献DOI怎么找? 2573593
邀请新用户注册赠送积分活动 1529388
关于科研通互助平台的介绍 1488259