Deep learning for wireless modulation classification based on discrete wavelet transform

计算机科学 人工智能 小波 离散小波变换 模式识别(心理学) 星座图 卷积神经网络 调制(音乐) 星座 小波变换 机器学习 频道(广播) 电信 误码率 物理 哲学 美学 天文
作者
Rasha M. Al‐Makhlasawy,Hanan S. Ghanem,Hossam M. Kassem,Maha Elsabrouty,Hesham F. A. Hamed,El‐Sayed M. El‐Rabaie,Gerges M. Salama
出处
期刊:International Journal of Communication Systems [Wiley]
卷期号:34 (18) 被引量:4
标识
DOI:10.1002/dac.4980
摘要

Summary In the presence of noise in communication systems, constellation diagram points are scattered to the extent that may make the modulation classification a difficult task. With the plethora of applications of machine and deep learning, several communication systems have adopted machine and deep learning to solve some classical detection and classification problems. Casting the modulation order detection as a pattern classification of the constellation images opens the door for application of mature machine learning and image processing tools to solve the classification problem, efficiently. This paper presents a system based on a wavelet‐aided convolutional neural network (CNN) classifier to efficiently detect the modulation type and order in the presence of noise. The proposed system depends on a pretrained CNN setup, which is trained with a set of constellation diagrams for each modulation scheme and used after that for testing. In addition, discrete wavelet transform (DWT) is investigated to generate representative patterns from constellation diagrams to be used for the training and testing tasks as well. The wavelet approximation images and their corresponding wavelet sub‐bands across all predefined scales are used in the dataset. Several pretrained networks including AlexNet, VGG‐16, and VGG‐19 are used as classifiers for the modulation type from the DWTs for different constellation diagrams. Several simulation experiments are presented in this paper to compare different scenarios for modulation classification at different signal‐to‐noise ratios (SNRs).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助ann采纳,获得10
刚刚
R喻andom完成签到,获得积分10
1秒前
科研通AI5应助雍以菱采纳,获得10
1秒前
天天下雨发布了新的文献求助10
2秒前
大闲鱼铭一完成签到 ,获得积分10
2秒前
樂酉完成签到 ,获得积分10
2秒前
勤奋酒窝发布了新的文献求助10
3秒前
3秒前
3秒前
好名字发布了新的文献求助10
4秒前
慕青应助PANYIAO采纳,获得10
6秒前
7秒前
MY2720发布了新的文献求助10
8秒前
想不出昵称完成签到,获得积分10
8秒前
1234354346完成签到,获得积分10
10秒前
三顿饭吃一天完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
11秒前
阿亮86完成签到,获得积分10
11秒前
恰饭发布了新的文献求助10
12秒前
Orange应助shimmer采纳,获得10
13秒前
何日完成签到 ,获得积分10
15秒前
SHmeuua发布了新的文献求助20
15秒前
花花完成签到,获得积分10
16秒前
sunboy14521发布了新的文献求助10
16秒前
喜欢吃香菜完成签到,获得积分20
17秒前
17秒前
科研通AI5应助祎雅采纳,获得10
17秒前
17秒前
18秒前
李健应助EthanZz采纳,获得10
18秒前
运气贼好的熊猫完成签到 ,获得积分10
20秒前
20秒前
酷波er应助zhangqq采纳,获得10
20秒前
21秒前
21秒前
24秒前
PANYIAO发布了新的文献求助10
24秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1250
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
APA educational psychology handbook, Vol 1: Theories, constructs, and critical issues 700
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3651948
求助须知:如何正确求助?哪些是违规求助? 3216156
关于积分的说明 9710947
捐赠科研通 2923898
什么是DOI,文献DOI怎么找? 1601432
邀请新用户注册赠送积分活动 754152
科研通“疑难数据库(出版商)”最低求助积分说明 732987