LayerCAM: Exploring Hierarchical Class Activation Maps for Localization

计算机科学 人工智能 判别式 对象(语法) 班级(哲学) 模式识别(心理学) 像素 分割 计算机视觉 特征(语言学) 目标检测 语言学 哲学
作者
Peng-Tao Jiang,Chang–Bin Zhang,Qibin Hou,Ming‐Ming Cheng,Yunchao Wei
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 5875-5888 被引量:370
标识
DOI:10.1109/tip.2021.3089943
摘要

The class activation maps are generated from the final convolutional layer of CNN. They can highlight discriminative object regions for the class of interest. These discovered object regions have been widely used for weakly-supervised tasks. However, due to the small spatial resolution of the final convolutional layer, such class activation maps often locate coarse regions of the target objects, limiting the performance of weakly-supervised tasks that need pixel-accurate object locations. Thus, we aim to generate more fine-grained object localization information from the class activation maps to locate the target objects more accurately. In this paper, by rethinking the relationships between the feature maps and their corresponding gradients, we propose a simple yet effective method, called LayerCAM. It can produce reliable class activation maps for different layers of CNN. This property enables us to collect object localization information from coarse (rough spatial localization) to fine (precise fine-grained details) levels. We further integrate them into a high-quality class activation map, where the object-related pixels can be better highlighted. To evaluate the quality of the class activation maps produced by LayerCAM, we apply them to weakly-supervised object localization and semantic segmentation. Experiments demonstrate that the class activation maps generated by our method are more effective and reliable than those by the existing attention methods. The code will be made publicly available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
妮妮发布了新的文献求助10
刚刚
莫若舞完成签到,获得积分10
刚刚
简宁发布了新的文献求助10
刚刚
赘婿应助jasar采纳,获得10
1秒前
1秒前
动听的友菱完成签到,获得积分10
1秒前
2秒前
chyx发布了新的文献求助10
4秒前
圆圆完成签到,获得积分10
5秒前
TAA66发布了新的文献求助10
6秒前
天天发布了新的文献求助30
6秒前
田様应助面壁者七號采纳,获得30
6秒前
ding应助梅子采纳,获得10
8秒前
阿褚发布了新的文献求助20
10秒前
明理苑博完成签到,获得积分10
14秒前
xiaji完成签到,获得积分10
15秒前
15秒前
16秒前
juanjuan应助小龅牙吖采纳,获得10
21秒前
Lorin完成签到 ,获得积分10
25秒前
123发布了新的文献求助10
27秒前
28秒前
29秒前
29秒前
思山完成签到,获得积分20
32秒前
陈1992完成签到 ,获得积分10
33秒前
Robe发布了新的文献求助10
33秒前
七七发布了新的文献求助10
34秒前
简宁完成签到,获得积分10
34秒前
善学以致用应助hshsh采纳,获得10
37秒前
37秒前
CodeCraft应助Robe采纳,获得10
40秒前
43秒前
43秒前
开心发布了新的文献求助10
43秒前
尼铬完成签到,获得积分10
43秒前
娄医生发布了新的文献求助10
44秒前
45秒前
共享精神应助读书破万卷采纳,获得10
46秒前
48秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161114
求助须知:如何正确求助?哪些是违规求助? 2812494
关于积分的说明 7895538
捐赠科研通 2471395
什么是DOI,文献DOI怎么找? 1315941
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602103