足细胞
基因敲除
小发夹RNA
细胞凋亡
肾
细胞生物学
下调和上调
生物
标记法
转染
DNA损伤
内科学
内分泌学
癌症研究
化学
作者
Guang-Jun Wu,Hong-Biao Zhao,Xiao-Wei Zhang
出处
期刊:Histology and Histopathology
日期:2021-07-16
卷期号:36 (11): 1155-1167
被引量:2
摘要
Herein, we aimed to determine whether DAPK1 and its post-transcriptional regulator miR-361 were implicated in high glucose (HG)-induced podocyte injury and renal damage in db/db mice.Podocytes were incubated with normal glucose (NG; 5 mM) or HG (30 mM). Podocyte apoptosis was evaluated using TUNEL staining. Lentiviral-delivered specific short hairpin RNA (shRNA) was designed to silence DAPK1 expression in podocytes. miR-361 agomir was administrated by tail intravenous injection in db/db diabetic mice to investigate the renoprotection of miR-361 in vivo.Exposure of podocytes to HG led to a significant increase in DAPK1 mRNA and protein levels and a decrease in miR-361 expression levels. Knockdown of DAPK1 attenuated HG-triggered growth inhibition, apoptosis, DNA damage and cell membrane damage in podocytes. Mechanically, DAPK1 was a direct target of miR-361. Transfection with miR-361 mimics into podocytes resulted in a significant decrease in the DAPK1 protein expression level. In addition, HG-induced the up-regulation of the DAPK1 protein expression level in podocytes was restrained by miR-361 mimics transfection. Intriguingly, overexpression of DAPK1 in HG-stimulated podocytes muted miR-361-mediated cytoprotection, including anti-apoptosis, resistance to DNA and membrane damage. In vivo, overexpression of miR-361 protected against hyperglycemia-induced podocyte loss, tubular atrophy and interstitial fibrosis in the kidney of db/db mice. Moreover, overexpression of miR-361 inhibited the protein expression of DAPK1 in the kidney of db/db mice.Our research presented a novel mechanism of HG-induced podocyte damage or renal lesion, supporting the miR-361/DAPK1 signaling pathway that could be used as a potential therapeutic target for the treatment of DN.
科研通智能强力驱动
Strongly Powered by AbleSci AI