亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An efficient Balanced Teaching-Learning-Based optimization algorithm with Individual restarting strategy for solving global optimization problems

计算机科学 趋同(经济学) 数学优化 人口 算法 元启发式 局部最优 优化算法 水准点(测量) 数学 大地测量学 经济增长 社会学 人口学 经济 地理
作者
Ahmad Taheri,Keyvan RahimiZadeh,R. Venkata Rao
出处
期刊:Information Sciences [Elsevier]
卷期号:576: 68-104 被引量:32
标识
DOI:10.1016/j.ins.2021.06.064
摘要

Teaching-learning-based optimization (TLBO) is a population-based metaheuristic algorithm which simulates the teaching and learning mechanisms in a classroom. The TLBO algorithm has emerged as one of the most efficient and attractive optimization techniques. Even though the TLBO algorithm has an acceptable exploration capability and fast convergence speed, there may be a possibility to converge into a local optimum during solving complex optimization problems and there is a need to keep a balance between exploration and exploitation capabilities. Hence, a Balanced Teaching-Learning-Based Optimization (BTLBO) algorithm is proposed in this paper. The proposed BTLBO algorithm is a modification of the TLBO algorithm and it consists of four phases: (1) Teacher Phase in which a weighted mean is used instead of a mean value for keeping the diversity, (2) Learner Phase, which is same as the learner phase of basic TLBO algorithm, (3) Tutoring Phase, which is a powerful local search for exploiting the regions around the best ever found solution, and (4) Restarting Phase, which improves exploration capability by replacing inactive learners with new randomly initialized learners. An acceptable balance between the exploration and exploitation capabilities is achieved by the proposed BTLBO algorithm. To evaluate the performance of BTLBO algorithm, several experimental studies are conducted on standard benchmark suits and the results are compared with several TLBO variants and state-of-the-art population-based optimization algorithms. The results are in excellent agreement and confirm the efficiency of BTLBO algorithm with accelerated exploitation and exploration capabilities with an appropriate balance between such criteria for solving complex optimization problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Crema发布了新的文献求助30
6秒前
7秒前
ZACK完成签到 ,获得积分10
29秒前
隐形曼青应助天才小熊猫采纳,获得10
39秒前
42秒前
1分钟前
moodlunatic完成签到,获得积分20
1分钟前
英俊的铭应助cao采纳,获得10
1分钟前
田様应助冷酷的雁菡采纳,获得10
1分钟前
冷酷的雁菡完成签到,获得积分20
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
3分钟前
cao发布了新的文献求助10
3分钟前
过分动真完成签到 ,获得积分10
4分钟前
科研通AI2S应助cao采纳,获得10
4分钟前
4分钟前
4分钟前
天天快乐应助cao采纳,获得10
4分钟前
5分钟前
5分钟前
隐形问萍发布了新的文献求助10
5分钟前
清华园吴彦祖完成签到,获得积分10
5分钟前
Griezmann完成签到,获得积分20
6分钟前
帆帆完成签到 ,获得积分10
6分钟前
Griezmann发布了新的文献求助10
6分钟前
Milo完成签到,获得积分10
7分钟前
Griezmann发布了新的文献求助10
7分钟前
Diss完成签到 ,获得积分10
7分钟前
思源应助郜连虎采纳,获得10
7分钟前
郜连虎完成签到,获得积分10
7分钟前
7分钟前
郜连虎发布了新的文献求助10
7分钟前
8分钟前
食堂里的明湖鸭完成签到 ,获得积分10
8分钟前
容若发布了新的文献求助10
8分钟前
8分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142675
求助须知:如何正确求助?哪些是违规求助? 2793563
关于积分的说明 7806945
捐赠科研通 2449831
什么是DOI,文献DOI怎么找? 1303518
科研通“疑难数据库(出版商)”最低求助积分说明 626959
版权声明 601328